Volume 41 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Yu Wang, Aiqin Han, Xuebao He, Fangfang Kuang, Feng Zhao, Peng Xiang, Kuidong Xu. Spatial patterns of phytoplankton communities in an International Seabed Authority licensed area (COMRA, Clarion-Clipperton Zone) in relation to upper ocean biogeochemistry[J]. Acta Oceanologica Sinica, 2022, 41(11): 45-57. doi: 10.1007/s13131-021-1938-4
Citation: Yu Wang, Aiqin Han, Xuebao He, Fangfang Kuang, Feng Zhao, Peng Xiang, Kuidong Xu. Spatial patterns of phytoplankton communities in an International Seabed Authority licensed area (COMRA, Clarion-Clipperton Zone) in relation to upper ocean biogeochemistry[J]. Acta Oceanologica Sinica, 2022, 41(11): 45-57. doi: 10.1007/s13131-021-1938-4

Spatial patterns of phytoplankton communities in an International Seabed Authority licensed area (COMRA, Clarion-Clipperton Zone) in relation to upper ocean biogeochemistry

doi: 10.1007/s13131-021-1938-4
Funds:  The Project of Monitoring and Protection of Ecosystem in the East Pacific Ocean Sponsored by COMRA under contract No. DY135-E2-5-03; the National Natural Science Foundation of China under contract Nos 41506217 and 41506136; the Project of Ministry of Science and Technology under contract No. GASI-01-02-04.
More Information
  • Corresponding author: xiangpeng@tio.org.cn; E-mail: kxu@qdio.ac.cn
  • Received Date: 2021-05-07
  • Accepted Date: 2021-06-21
  • Available Online: 2022-09-27
  • Publish Date: 2022-11-01
  • The Clarion-Clipperton Zone (CCZ) hosts one of the largest known oceanic nodule fields worldwide and is regulated by the International Seabed Authority. A baseline assessment of diversity and distribution patterns is essential for reliable predictions of disturbed ecosystem response scenarios for sustained commercial activities in the future. In the present study, the spatial patterns and diversity of phytoplankton communities were analyzed along with upper ocean biogeochemistry, in the licensed China Ocean Mineral Resources R&D Association (COMRA) contract area and the surrounding western CCZ between August 21 and October 8, 2017. Results indicated this was a typical low-nutrient low-chlorophyll a (Chl a) environment, characterized by low levels of phytoplankton abundance and diversity. In total 112 species belonging to 4 phyla were recorded (>10 μm), with species counts including 82 diatoms, 27 dinoflagellates, 1 cyanobacteria and 2 chrysophyte. Dominant taxa in successive order of descending abundance and occurrence included Nizschia marina, Cyclotella stylorum, Dactyliosolen mediterraneus, Rhizosolenia setigera, Pseudo-nitzschia delicatissima, Thalassiothrix frauenfeldii, Synedra sp., Chaetoceros simplex and Pseudo-nitzschia circumpora. The depth-averaged abundance and Chl a concentrations were (265±233) cells/L and (0.27±0.30) μg/L, respectively. Diatoms accounted for 90.94% of the community with (241±223) cells/L, while dinoflagellates accounted for 5.67% and (15±13) cells/L. The distribution pattern exhibited the same trend as abundance, Chl a and species richness, showing subsurface maximum levels at around 100 m, with stations near 10°N having higher levels than in the north. Cluster analysis was performed in two assemblages, relating to geographic locations to the south and north of 12°N. The subsurface maximum of abundance, Chl a, species richness, dissolved oxygen and nitrite were generally corresponding to the presence of high salinity North Pacific Central Water at depths of 50−120 m. Higher availability of nitrate, phosphate and silicic acid in the subsurface may account for the shift in phytoplankton distribution, as shown by redundancy correspondence and spearman correlation analysis. Diel variation in an anchor station demonstrated prominent species succession without significant differences in oceanographic variables, among which diatoms succession resulted from the light limitation, while dinoflagellate diel variation mainly related to lateral transport of water masses. The observed patchiness in spatial phytoplankton distributional patterns was attributed to upper ocean environmental gradients in the CCZ. The baseline generated in this study could be analyzed using current conservation strategy programs associated with deep-sea mining.
  • These authors contributed equally to this work.
  • loading
  • Bai Jie, Jiang Yan, Sun Jun, et al. 2007. The diurnal fluctuation of phytoplankton vertical distribution adjacent to the Yellow Sea cold water mass. Periodical of Ocean University of China, 37(6): 1013–1016, 938
    Balch W M, Poulton A J, Drapeau D T, et al. 2011. Zonal and meridional patterns of phytoplankton biomass and carbon fixation in the equatorial Pacific Ocean, between 110°W and 140°W. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(3–4): 400–416
    Błażewicz-Paszkowycz M, Pabis K, Jóźwiak P. 2015. Tanaidacean fauna of the Kuril-Kamchatka Trench and adjacent abyssal plain-abundance, diversity and rare species. Deep-Sea Research Part II: Topical Studies in Oceanography, 111: 325–332. doi: 10.1016/j.dsr2.2014.08.021
    Brzezinski M A. 1985. The Si: C: N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology, 21(3): 347–357
    Brzezinski M A, Dumousseaud C, Krause J W, et al. 2008. Iron and silicic acid concentrations together regulate Si uptake in the equatorial Pacific Ocean. Limnology and Oceanography, 53(3): 875–889. doi: 10.4319/lo.2008.53.3.0875
    Capone D G, Zehr J P, Paerl H W, et al. 1997. Trichodesmium, a globally significant marine cyanobacterium. Science, 276(5316): 1221–1229. doi: 10.1126/science.276.5316.1221
    Cervetto G, Gaudy R, Pagano M, et al. 1993. Diel variations in Acartia tonsa feeding, respiration and egg production in a Mediterranean coastal lagoon. Journal of Plankton Research, 15(11): 1207–1228. doi: 10.1093/plankt/15.11.1207
    Cole C V, Sanford R L. 1989. Biological aspects of the phosphorus cycle. In: Proceedings Symposium on Phosphorous Requirements for Sustainable Agriculture in Asia and Oceania. Los Banos, Philippines: International Rice Research Institute
    Couté A, Perrette C, Chomérat N. 2012. Three Dinophyceae from Clipperton Island lagoon (eastern Pacific Ocean), including a description of Peridiniopsiscristata var. tubulifera var. nov. Botanica Marina, 55(1): 59–71. doi: 10.1515/bot-2011-121
    Cullen J J. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences, 39(5): 791–803. doi: 10.1139/f82-108
    Darley W M. 1982. Algal Biology: A Physiological Approach. Oxford: Blackwell Scientific Publications, 168
    Dortch Q, Whitledge T E. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions?. Continental Shelf Research, 12(11): 1293–1309. doi: 10.1016/0278-4343(92)90065-R
    Dugdale R C, Chai Fei, Feely R A, et al. 2011. The regulation of equatorial Pacific new production and pCO2 by silicate-limited diatoms. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(3–4): 477–492
    Dunn D C, van Dover C L, Etter R J, et al. 2018. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Science Advances, 4(7): eaar4313. doi: 10.1126/sciadv.aar4313
    Dupuis A P, Hann B J. 2009. Warm spring and summer water temperatures in small eutrophic lakes of the Canadian prairies: potential implications for phytoplankton and zooplankton. Journal of Plankton Research, 31(5): 489–502. doi: 10.1093/plankt/fbp001
    Egge J K. 1998. Are diatoms poor competitors at low phosphate concentrations?. Journal of Marine Systems, 16(3–4): 191–198
    Eppley R W. 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70(4): 1063–1085
    Falkowski P G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 387(6630): 272–275. doi: 10.1038/387272a0
    Fang Tao, Li Daoji, Yu Lihua, et al. 2008. Changes in nutrient uptake of phytoplankton under the interaction between sunlight and phosphate in the Changjiang (Yangtze) River Estuary. Chinese Journal of Geochemistry, 27(2): 161–170. doi: 10.1007/s11631-008-0161-8
    Finkel Z V, Beardall J, Flynn K J, et al. 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research, 32(1): 119–137. doi: 10.1093/plankt/fbp098
    Fisher T R, Peele E R, Ammerman J W, et al. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Marine Ecology Progress Series, 82: 51–63. doi: 10.3354/meps082051
    Fraga S, Gallagher S M, Anderson D M. 1989. Chain-forming dinoflagellates: an adaptation to red tides. In: Okaichi T, Anderson D M, Nemoto T, eds. Red Tides: Biology, Environmental Science and Toxicology. Amsterdam: Elsevier, 281–284
    Furuya K, Marumo R. 1983. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. Journal of Plankton Research, 5(3): 393–406. doi: 10.1093/plankt/5.3.393
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. 2008. GB/T 12763.4–2007. Specifications for Oceanographic Survey—Part 4: Survey of Chemical Parameters in Sea Water. Beijing: Standards Press of China, 1–65
    Gibbons M J. 1992. Diel feeding and vertical migration of Sagitta serratodentata Krohn tasmanica Thomson (Chaetognatha) in the southern Benguela. Journal of Plankton Research, 14(2): 249–259. doi: 10.1093/plankt/14.2.249
    Glover A G, Smith C R, Paterson G L J, et al. 2002. Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity. Marine Ecology Progress Series, 240: 157–170. doi: 10.3354/meps240157
    Gruber N, Deutsch C A. 2014. Redfield’s evolving legacy. Nature Geoscience, 7(12): 853–855. doi: 10.1038/ngeo2308
    Guo Yujie, Qian Shuben. 2003. China Sea-weed Records: Fifth Volume Bacillariophyta. Beijing: Science Press. 1–493
    Hallegraeff G M. 2010. Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. Journal of Phycology, 46(2): 220–235. doi: 10.1111/j.1529-8817.2010.00815.x
    Heaney S I, Eppley R W. 1981. Light, temperature and nitrogen as interacting factors affecting diel vertical migrations of dinoflagellates in culture. Journal of Plankton Research, 3(2): 331–344. doi: 10.1093/plankt/3.2.331
    Hecky R E, Kilham P. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33(4part2): 796–822. doi: 10.4319/lo.1988.33.4part2.0796
    Hensen V. 1887. ü ber die Bestimmung des Planktonsoder desim Meeretreibenden Materials an Pflanzen und Thieren. Kommission zurwissenschaftlichen Untersuchung der deutschen Meere in Kiel: 1882–1886. V Bericht Jahrgang (in German), 12–16: 1–107
    Huisman J, Arrayás M, Ebert U, et al. 2002. How do sinking phytoplankton species manage to persist?. The American Naturalist, 159(3): 245–254. doi: 10.1086/338511
    Hutchinson G E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22: 415–427. doi: 10.1101/SQB.1957.022.01.039
    International Seabed Authority (ISA). 2012. Decision of the Council relating to an environmental management plan for the Clarion-Clipperton Zone. ISBA/18/C/22. Kingston, Jamaica: International Seabed Authority
    Janssen A, Kaiser S, Meißner K, et al. 2015. A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PLoS ONE, 10(2): e0117790. doi: 10.1371/journal.pone.0117790
    Jochem F J, Meyerdierks D. 1999. Cytometric measurement of the DNA cell cycle in the presence of chlorophyll autofluorescence in marine eukaryotic phytoplankton by the blue-light excited dye YOYO-1. Marine Ecology Progress Series, 185: 301–307. doi: 10.3354/meps185301
    Johnson Z I, Shyam R, Ritchie A E, et al. 2010. The effect of iron- and light-limitation on phytoplankton communities of deep chlorophyll maxima of the western Pacific Ocean. Journal of Marine Research, 68(2): 283–308. doi: 10.1357/002224010793721433
    Jones D O B, Kaiser S, Sweetman A K, et al. 2017. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE, 12(2): e0171750. doi: 10.1371/journal.pone.0171750
    Justić D, Rabalais N N, Turner R E, et al. 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3): 339–356
    Kaiser S, Smith C R, Arbizu P M. 2017. Editorial: biodiversity of the Clarion Clipperton Fracture Zone. Marine Biodiversity, 47(2): 259–264. doi: 10.1007/s12526-017-0733-0
    Karl D M. 2000. Phosphorus, the staff of life. Nature, 406(6791): 31–33
    Karl D M, Letelier R M. 2008. Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Marine Ecology Progress Series, 364: 257–268. doi: 10.3354/meps07547
    Kawai H. 1972. Hydrography of the Kuroshio Extension. In: Stommell H, Yoshida K, eds. Kuroshio, Its Physical Aspects. Tokyo: University of Tokyo Press, 235–352
    Koeve W, Kähler P. 2010. Balancing ocean nitrogen. Nature Geoscience, 3(6): 383–384. doi: 10.1038/ngeo884
    Kofoid C A, Skogsberg T. 1928. The Dinoflagellata: the Dinophysoidae. Memoirs of the Museum of Comparative Zoology, 51: 1–766
    Krause J W, Nelson D M, Brzezinski M A. 2011. Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(3–4): 434–448
    Le Quéré C, Harrison S P, Prentice I C, et al. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology, 11(11): 2016–2040
    Leblanc K, Hutchins D A. 2005. New applications of a biogenic silica deposition fluorophore in the study of oceanic diatoms. Limnology and Oceanography: Methods, 3(10): 462–476. doi: 10.4319/lom.2005.3.462
    Lins L, Guilini K, Veit-Köhler G, et al. 2014. The link between meiofauna and surface productivity in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 108: 60–68. doi: 10.1016/j.dsr2.2014.05.003
    Lipschultz F. 1995. Nitrogen-specific uptake rates of marine phytoplankton isolated from natural populations of particles by flow cytometry. Marine Ecology Progress Series, 123: 245–258. doi: 10.3354/meps123245
    Lohmann H. 1901. Ueber das Fischen mit Netzen aus Müllergaze No 20. Wissenschaftliche Meeresuntersuchungen Abth. Kiel. (Neue Folge), 5: 45–66
    Margalef R, Estrada M, Blasco D. 1979. Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In: Taylor D L, Seliger H H, eds. Toxic Dinoflagellate Blooms. New York: Elsevier, 89–94
    Marshall H G. 1976. Phytoplankton distribution along the eastern coast of the USA. I. Phytoplankton composition. Marine Biology, 38(1): 81–89. doi: 10.1007/BF00391488
    Martiny A C, Pham C T A, Primeau F W, et al. 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience, 6(4): 279–283. doi: 10.1038/ngeo1757
    Moutin T, Karl D M, Duhamel S, et al. 2008. Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences, 5(1): 95–109. doi: 10.5194/bg-5-95-2008
    Ou Linjian, Huang Bangqin, Lin Lizhen, et al. 2006. Phosphorus stress of phytoplankton in the Taiwan Strait determined by bulk and single-cell alkaline phosphatase activity assays. Marine Ecology Progress Series, 327: 95–106. doi: 10.3354/meps327095
    Pabis K, Błażewicz-Paszkowycz M, Jóźwiak P, et al. 2015. Tanaidacea of the Amundsen and Scotia Seas: an unexplored diversity. Antarctic Science, 27(1): 19–30. doi: 10.1017/S0954102014000303
    Pape E, Jones D O B, Manini E, et al. 2013. Benthic-pelagic coupling: effects on nematode communities along southern European continental margins. PLoS ONE, 8(4): e59954. doi: 10.1371/journal.pone.0059954
    Parker A E, Wilkerson F P, Dugdale R C, et al. 2011. Spatial patterns of nitrogen uptake and phytoplankton in the equatorial upwelling zone (110°W–140°W) during 2004 and 2005. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(3–4): 417–433
    Paytan A, McLaughlin K. 2007. The oceanic phosphorus cycle. Chemical Reviews, 107(2): 563–576. doi: 10.1021/cr0503613
    Raven J A, Richardson K. 1984. Dinophyte flagella: a cost-benefit analysis. New Phytologist, 98(2): 259–276. doi: 10.1111/j.1469-8137.1984.tb02736.x
    Redfield A C, Ketchum B H, Richards F A. 1963. The influence of organisms on the composition of seawater. In: Hill M N, ed. The Sea, Vol. 2: The Composition of Sea-Water Comparative and Descriptive Oceanography, Interscience Publishers. New York: John Wiley, 26–77
    Richardson T L, Gibson C E, Heaney S I. 2000. Temperature, growth and seasonal succession of Phytoplankton in Lake Baikal, Siberia. Freshwater Biology, 44(3): 431–440. doi: 10.1046/j.1365-2427.2000.00581.x
    Selph K E, Landry M R, Taylor A G, et al. 2011. Spatially-resolved taxon-specific phytoplankton production and grazing dynamics in relation to iron distributions in the Equatorial Pacific between 110 and 140°W. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(3–4): 358–377
    Shentu Haigang, Xu Zhihong, Wang Hongfa. 2009. Contrast study to data from geological sampling and deep-tow system of dense portion in China Pioneer Area. Journal of Marine Sciences, 27(4): 17–23
    Stoecker D K. 1999. Mixotrophy among Dinoflagellates. Journal of Eukaryotic Microbiology, 46(4): 397–401. doi: 10.1111/j.1550-7408.1999.tb04619.x
    Stramski D, Reynolds R A. 1993. Diel variations in the optical properties of a marine diatom. Limnology and Oceanography, 38(7): 1347–1364. doi: 10.4319/lo.1993.38.7.1347
    Sun Jun, Liu Dongyan. 2002. The preliminary notion on nomenclature of common phytoplankton in China Seas waters. Oceanologia et Limnologia Sinica, 33(3): 271–286
    Sun Jun, Liu Dongyan, Qian Shuben. 2002. A quantitative research and analysis method for marine phytoplankton: an introduction to Utermöhl method and its modification. Journal of Oceanography of Huanghai & Bohai Seas, 20(2): 105–112
    Talley L D, Pickard G L, Emery W J, et al. 2011. Descriptive Physical Oceanography: An Introduction. Boston: Academic Press
    Tang Senming, Chen Xingqun. 2006. Phytoplankton diel rhythm in the waters of Quanzhou Bay in Fujian, China. Haiyang Xuebao (in Chinese), 28(4): 129–137
    Taylor A G, Landry M R, Selph K E, et al. 2011. Biomass, size structure and depth distributions of the microbial community in the eastern equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(3–4): 342–357
    Tomas C. 1997. Identifying Marine Phytoplankton. San Diego: Academic Press, 1–858
    Tsuchiya M. 1968. Upper Waters of the Intertropical Pacific Ocean. Baltimore: Johns Hopkins Press, 1–50
    Turner J W, Good B, Cole D, et al. 2009. Plankton composition and environmental factors contribute to Vibrio seasonality. The ISME Journal, 3(9): 1082–1092. doi: 10.1038/ismej.2009.50
    van Haren H, Mills D K, Wetsteyn L P M J. 1998. Detailed observations of the phytoplankton spring bloom in the stratifying central North Sea. Journal of Marine Research, 56(3): 655–680. doi: 10.1357/002224098765213621
    Vanreusel A, Hilario A, Ribeiro P A, et al. 2016. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific Reports, 6: 26808. doi: 10.1038/srep26808
    Villarino M L, Figueiras F G, Jones K J, et al. 1995. Evidence of in situ diel vertical migration of a red-tide microplankton species in Ría de Vigo (NW Spain). Marine Biology, 123(3): 607–617. doi: 10.1007/BF00349239
    Volz J B, Mogollón J M, Geibert W, et al. 2018. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 140: 159–172. doi: 10.1016/j.dsr.2018.08.006
    Wilson G D F. 2017. Macrofauna abundance, species diversity and turnover at three sites in the Clipperton-Clarion Fracture Zone. Marine Biodiversity, 47(2): 323–347. doi: 10.1007/s12526-016-0609-8
    Yang Jiaowen, Hua Di, Gu Xingen. 1994. Ecological study on diurnal dynamics of phytoplankton in the pinnate front of the Yangtze River Estuary. Journal of Marine Sciences, 12(1): 47–57
    Zeppilli D, Pusceddu A, Trincardi F, et al. 2016. Seafloor heterogeneity influences the biodiversity-ecosystem functioning relationships in the deep sea. Scientific Reports, 6: 26352. doi: 10.1038/srep26352
    Zinssmeister C, Wilke T, Hoppenrath M. 2017. Species diversity of dinophysoid dinoflagellates in the Clarion-Clipperton Fracture Zone, eastern Pacific. Marine Biodiversity, 47(2): 271–287. doi: 10.1007/s12526-016-0607-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (347) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return