Intra-seasonal variability of the abyssal currents in COMRA’s contract area in the Clarion-Clipperton Zone

Fangfang Kuang Jing Cha Junpeng Zhang Aijun Pan Hangyu Chen Xiwu Zhou Chunsheng Jing Xiaogang Guo

Fangfang Kuang, Jing Cha, Junpeng Zhang, Aijun Pan, Hangyu Chen, Xiwu Zhou, Chunsheng Jing, Xiaogang Guo. Intra-seasonal variability of the abyssal currents in COMRA’s contract area in the Clarion-Clipperton Zone[J]. Acta Oceanologica Sinica, 2022, 41(11): 1-11. doi: 10.1007/s13131-021-1945-5
Citation: Fangfang Kuang, Jing Cha, Junpeng Zhang, Aijun Pan, Hangyu Chen, Xiwu Zhou, Chunsheng Jing, Xiaogang Guo. Intra-seasonal variability of the abyssal currents in COMRA’s contract area in the Clarion-Clipperton Zone[J]. Acta Oceanologica Sinica, 2022, 41(11): 1-11. doi: 10.1007/s13131-021-1945-5

doi: 10.1007/s13131-021-1945-5

Intra-seasonal variability of the abyssal currents in COMRA’s contract area in the Clarion-Clipperton Zone

Funds: The Fund of China Ocean Mineral Resources R&D Association under contract No. DY135-E2-5-01; the National Program on Global Change and Air-Sea Interaction Ⅱ under contract No. GASI-04-WLHY-01.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  ETOPO1 depth of the eastern tropical Pacific Ocean, position of the mooring site (red triangle) and the section in c (a); depth around the mooring site (b); climatologic temperature (from World Ocean Atlas 2009) at a meridional section of 154°W (0°−20°N) and the observation range of current metres (red line represents the observation range of 75-kHz ADCPs at upper layers and the red dots below 1 200 m represent the location of Aquadopp current meters) (c).

    Figure  2.  Time series of 3-d averaged flow vectors after 3-d low-pass filtering at different depths.

    Figure  3.  Kinetic energy of intra-seasonal variability (ISV), low-frequency variability and their ratio. The blue circle line represents kinetic energy of low-frequency variability (Ke-low); the blue asterick line represents kinetic energy of ISV (Ke-isv); the red triangle line represents the ratio of Ke-isv and Ke-low.

    Figure  4.  Power spectral density (PSD) of the velocity in zonal (a) and meridional (b) currents.

    Figure  5.  Standard deviations (Std) of the meridional and zonal velocities at the intra-seasonal time scale.

    Figure  6.  Continuous wavelet transform of meridional velocity at surface current (a) and currents at 50−100 m (b), 450−500 m (c), 900−1 000 m (d), 1 854 m (e) , 4 616 m (f). The colour filled maps represent the wavelet power spectrum (WPS), and the curves on the right represent the global wavelet spectrum (GWS). In the colour maps, the thick black contours denote the 5% significance level against red noise. The cone of influence where edge effects might distort the picture is shown in lighter shades.

    Figure  7.  Cross spectrum analysis between the surface meridional current (OSCAR) and those at other depths. a. Cross power spectral density; b. cross power spectral phase lag; c. magnitude-squared coherence. The cpd means counts per day.

    Figure  8.  Time series of 3-d averaged flow vectors after 20−40 d bandpass filtering.

    Figure  9.  Comparison of meridional velocity at 4 616 m from observations and reanalysis products. a. Time series; b. squared wavelet coherence; c. power spectral density (PSD) of the meridional velocity at the mooring site, from reanalysis data.

    Figure  10.  Spatial amplitude (a), spatial phase (b), spatial reconstruction (c), temporal amplitude (d), temporal phase (e), frequency-spectra density (f) of the first complex empirical orthogonal function (CEOF) mode of meridional velocity at 4 000 m. The mooring site is marked with a triangle in a, b and c. The cpd means counts per day.

    Figure  11.  The first three empirical orthogonal function modes of sea level anomaly at the intra-seasonal time scale.

    Figure  12.  Continuous wavelet transform of the time series of the first three empirical orthogonal function modes of sea level anomaly. WPS: wavelet power spectrum; GWS: global wavelet spectrum.

    Figure  13.  Time series of the first empirical orthogonal function (EOF) mode of sea level anomaly (SLA) and meridional velocity at 4 616 m (a); cross wavelet transform (b) and squared wavelet coherence (c) between the time series of the first EOF mode of SLA and meridional velocity at 4 616 m.

    Figure  14.  Spatial patterns of 35 m (a) and 4 000 m (b) meridional velocity; homogeneous (c) and heterogeneous (d) correlation map for the 4 000 m velocity, the 95% significance level is shown as red contours; time evolution of the expansion coefficients of 35 m and 4 000 m meridional velocity (e). All is for the first leading SVD mode. The mooring site is marked with a red triangle in a and b. SVD: Singular Value Decomposition; SCF: Squared Covariance Fraction (measuring the amount of squared covariance for which each mode accounts).

  • Aleynik D, Inall M E, Dale A, et al. 2017. Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Scientific Reports, 7(1): 16959. doi: 10.1038/s41598-017-16912-2
    Cox M D. 1980. Generation and propagation of 30-Day waves in a numerical model of the Pacific. Journal of Physical Oceanography, 10(8): 1168–1186. doi: 10.1175/1520-0485(1980)010<1168:GAPODW>2.0.CO;2
    Enfield D B. 1987. The intraseasonal oscillation in eastern Pacific sea levels: how is it forced?. Journal of Physical Oceanography, 17(11): 1860–1876. doi: 10.1175/1520-0485(1987)017<1860:TIOIEP>2.0.CO;2
    Eriksen C C. 1985. Moored observations of deep Low-Frequency motions in the central Pacific Ocean: vertical structure and interpretation as equatorial waves. Journal of Physical Oceanography, 15(8): 1085–1113. doi: 10.1175/1520-0485(1985)015<1085:MOODLF>2.0.CO;2
    Eriksen C C, Richman J. 1988. An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific. Journal of Geophysical Research: Oceans, 93(C12): 15455–15466. doi: 10.1029/JC093iC12p15455
    Farrar J T. 2011. Barotropic Rossby waves radiating from tropical instability waves in the Pacific Ocean. Journal of Physical Oceanography, 41(6): 1160–1181. doi: 10.1175/2011JPO4547.1
    Hamilton P. 2009. Topographic Rossby waves in the Gulf of Mexico. Progress in Oceanography, 82(1): 1–31. doi: 10.1016/j.pocean.2009.04.019
    Hamilton P, Bower A, Furey H, et al. 2019. The loop current: observations of deep eddies and topographic waves. Journal of Physical Oceanography, 49(6): 1463–1483. doi: 10.1175/JPO-D-18-0213.1
    Liang Xinfeng, Thurnherr A M. 2011. Subinertial variability in the deep ocean near the East Pacific Rise between 9° and 10°N. Geophysical Research Letters, 38(6): L06606
    Liu Qinyu, Pan Aijun, Liu Zhengyu. 2003. Intraseasonal oscillation and baroclinic instability of upper layer ocean in the north equator current. Oceanologia et Limnologia Sinica, 34(1): 94–100
    Liu Yansong, Yu Fei, Nan Feng, et al. 2019. Intraseasonal oscillation of deep currents influenced by mesoscale eddies in the Kuroshio Extension Region. Scientific Reports, 9(1): 4147. doi: 10.1038/s41598-019-39567-7
    Ma Qiang, Wang Fan, Wang Jianing, et al. 2019. Intensified deep ocean variability induced by topographic rossby waves at the Pacific Yap-Mariana junction. Journal of Geophysical Research: Oceans, 124(11): 8360–8374. doi: 10.1029/2019JC015490
    Menemenlis D, Fukumori I, Lee T. 2005. Using green’s functions to calibrate an ocean general circulation model. Monthly Weather Review, 133(5): 1224–1240. doi: 10.1175/MWR2912.1
    Oey L Y. 2008. Loop current and deep eddies. Journal of Physical Oceanography, 38(7): 1426–1449. doi: 10.1175/2007JPO3818.1
    Oey L Y, Lee H C. 2002. Deep eddy energy and topographic Rossby waves in the Gulf of Mexico. Journal of Physical Oceanography, 32(12): 3499–3527. doi: 10.1175/1520-0485(2002)032<3499:DEEATR>2.0.CO;2
    Qiao Fangli, Tal E, Yuan Yeli. 2004. The zonal distribution features of high frequency oscillations in the oceans derived from satellite altimeter data. Haiyang Xuebao (in Chinese), 26(3): 1–7
    Qiao L, Weisberg R H. 1995. Tropical instability wave kinematics: observations from the Tropical Instability Wave Experiment. Journal of Geophysical Research: Oceans, 100(C5): 8677–8693. doi: 10.1029/95JC00305
    Shu Yeqiang, Xue Huijie, Wang Dongxiao, et al. 2016. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea. Scientific Reports, 6(1): 24338. doi: 10.1038/srep24338
    Spillane M C, Enfield D B, Allen J S. 1987. Intraseasonal oscillations in sea level along the west coast of the Americas. Journal of Physical Oceanography, 17(3): 313–325. doi: 10.1175/1520-0485(1987)017<0313:IOISLA>2.0.CO;2
    Sun Jilin, Li Li. 1998. Priliminary analysis on Lower Frequency Waves in the Equatorial Pacific. Journal of Ocean University of Qingdao, (3): 24–30
    Wang Fujun, Zhang Linlin, Hu Dunxin, et al. 2017. The vertical structure and variability of the western boundary currents east of the Philippines: case study from in situ observations from December 2010 to August 2014. Journal of Oceanography, 73(6): 743–758. doi: 10.1007/s10872-017-0429-x
    Willett C S, Leben R R, Lavín M F. 2006. Eddies and Tropical Instability Waves in the eastern tropical Pacific: a review. Progress in Oceanography, 69(1–2): 218–238
    Yoshioka N, Endoh M, Ishizaki H. 1988. Observation of the abyssal current in the West Mariana Basin. Journal of the Oceanographical Society of Japan, 44(1): 33–39. doi: 10.1007/BF02303148
    Zhai Ping. 2008. The distribution characteristic and mechanism of intraseasonal oscillations in global oceans (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Zhu Yingli, Liang Xinfeng. 2020. Coupling of the surface and Near-Bottom currents in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 125(11): e2020JC016488
  • 加载中
图(14)
计量
  • 文章访问数:  525
  • HTML全文浏览量:  173
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-03
  • 录用日期:  2021-07-12
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回