Vertical structure of tidal currents in the Xuliujing Section of Changjiang River Estuary

Zhigao Chen Ya Ban Xiaoye Chen Dajun Li Shengping Wang

Zhigao Chen, Ya Ban, Xiaoye Chen, Dajun Li, Shengping Wang. Vertical structure of tidal currents in the Xuliujing Section of Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2023, 42(2): 44-55. doi: 10.1007/s13131-021-1976-y
Citation: Zhigao Chen, Ya Ban, Xiaoye Chen, Dajun Li, Shengping Wang. Vertical structure of tidal currents in the Xuliujing Section of Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2023, 42(2): 44-55. doi: 10.1007/s13131-021-1976-y

doi: 10.1007/s13131-021-1976-y

Vertical structure of tidal currents in the Xuliujing Section of Changjiang River Estuary

Funds: The National Natural Science Foundation of China under contract Nos 41806114 and 42266006; the Jiangxi Provincial Natural Science Foundation under contract Nos 20202ACBL214019, 20181BAB216031 and 20212BBE53031; the Technological Innovation and Application Development in Chongqing under contract No. CSTB2022TIAD-GPX0016; the Incentive and Guidance Project of Scientific Research Performance for Scientific Research Institutes in Chongqing under contract No. cstc2021jxjl120017; the Open Fund of the Key Laboratory of Marine Environmental Survey Technology and Application of Ministry of Natural Resources under contract Nos MESTA-2020-A002 and MESTA-2021-B001.
More Information
    Corresponding author: E-mail: 531214372@qq.com; shpwang@ecut.edu.cn; shpwang@ecut.edu.cn.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Area of study. Red circles indicate the deploy location of the acoustic Doppler current profilers, and the dashed blue line represents Xuliujing Section.

    Figure  2.  Time series of the discharges at Datong Station (thumbnail image in Fig. 1) in 2011. Datong is the last permanent hydrometric station with long discharge records on the main Changjiang River, and the discharge is difficult to observe owing to the tidal influence. So the discharge in Datong is commonly regarded as the net discharge into the East China Sea.

    Figure  3.  Shapes of Xuliujing Section on three different dates of 2011. A boat-mounted single-beam echo sounder transducer (sonar) was used for bathymetric surveying at Xuliujing Section (Fig. 1) once a month. The echo sounder was a 208 kHz HY1600, 8 degree transducer, with a depth accuracy of 0.01 m+0.1%D (D is measured depth) and sampling rate of 5 Hz.

    Figure  4.  Energy partition of vertical-averaged currents at three acoustic Doppler current profiler stations. Area of pie chart (top-row) indicates total kinetic energy variance $\sigma^2_{{\rm{KE}}_{{\rm{dat}}}}$, and the sector is the Kinetic energy variance ratio VE, which represents relative contribution of the tidal component to the total flow in each season. The largest pie appears at Station C2 in summer and it represents 0.67 m4/s4. Histogram bars indicate percent energy En in the individual constituents.

    Figure  5.  Vertical profiles of mean current for the three acoustic Doppler current profiler stations. Direction is counterclockwise angle from east.

    Figure  6.  M2 tidal constituent ellipses at different depths. Blue lines indicate measured data, red lines are solution of optimally fit frictional model with a constant eddy viscosity and corresponding value of cost function (detailed in Section 4.1).

    Figure  7.  Barotropic current (red line) and vertical distribution of baroclinic current (blue line) for M2 constituent at different stations.

    Figure  8.  The vertical distribution of M2 ellipse parameters and the frictional model for three stations. Dots indicate measured data, solid lines are optimally fit model solution with a constant eddy viscosity and corresponding value of cost function (detailed in Section 4.1). Horizontal lines denote the tidal-averaged water depth.

    Figure  9.  Frictional model solutions using four different eddy viscosity ω appropriate to the Station C2 in spring. Dashed lines indicate ω=2×10−4 m2/s, dots lines indicate ω=5×10−4 m2/s, solid lines indicate ω=10×10−4 m2/s, and thick solid lines indicate ω=20×10−4 m2/s.

    Figure  10.  Seasonal variation of mean currents at upper, middle and lower layers (0.2D, 0.5D and 0.8D, D is water depth) for three acoustic Doppler current profiler stations.

    Figure  11.  Seasonal variation of M2 ellipses at upper, middle and lower layers (0.2D, 0.5D and 0.8D, D is water depth) for three acoustic Doppler current profiler stations.

    Table  1.   Basic parameters of the three acoustic Doppler current profiler stations located in Xuliujing Section

    StationDepth/
    m
    Top unmeasured
    length/m
    Bottom unmeasured length/mNumber of
    valid bins
    C114.9~2~39
    C251.5~4~445
    C39.7~2~26
    下载: 导出CSV
  • Beardsley R C, Limeburner R, Yu H, et al. 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 4(1−2): 57–76. doi: 10.1016/0278-4343(85)90022-6
    Bi Congcong, Bao Xianwen, Ding Yang, et al. 2019. Observed characteristics of tidal currents and mean flow in the northern Yellow Sea. Journal of Oceanology and Limnology, 37(2): 461–473. doi: 10.1007/s00343-019-8026-z
    Bolaños R, Brown J M, Amoudry L O, et al. 2013. Tidal, riverine, and wind influences on the circulation of a macrotidal estuary. Journal of Physical Oceanography, 43(1): 29–50. doi: 10.1175/JPO-D-11-0156.1
    Chen Zhongyuan, Li Jiufa, Shen Huanting, et al. 2001. Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology, 41(2−3): 77–91. doi: 10.1016/S0169-555X(01)00106-4
    Codiga D L, Rear L V. 2004. Observed tidal currents outside Block Island Sound: offshore decay and effects of estuarine outflow. Journal of Geophysical Research, 109(C7): C07S05
    Davies A G. 1990. A model of the vertical structure of the wave and current bottom boundary layer. In: Davies A M, ed. Modeling Marine Systems. Boca Raton: CRC Press, 263–297
    DiMarco S F, Reid R O. 1998. Characterization of the principal tidal current constituents on the Texas-Louisiana shelf. Journal of Geophysical Research, 103(C2): 3093–3109. doi: 10.1029/97JC03289
    Godin G. 1972. The Analysis of Tides. Toronto: University of Toronto Press
    Herrera J L, Varela R A, Rosón G. 2008. Spatial variability of the barotropic M2 constituent tidal current over the Rías Baixas Galician shelf (NW Spain). Journal of Marine Systems, 72(1−4): 189–199. doi: 10.1016/j.jmarsys.2007.07.006
    Kundu P K, Blanton J O, Janopaul M M. 1981. Analysis of current observations on the Georgia shelf. Journal of Physical Oceanography, 11(8): 1139–1149. doi: 10.1175/1520-0485(1981)011<1139:AOCOOT>2.0.CO;2
    Larsen L H, Cannon G A, Choi B H. 1985. East China Sea tide currents. Continental Shelf Research, 4(1−2): 77–103. doi: 10.1016/0278-4343(85)90023-8
    Lee S, Lie H J, Cho C H, et al. 2011. Vertical structure of the M2 tidal current in the Yellow Sea. Ocean Science Journal, 46(2): 73–84. doi: 10.1007/s12601-011-0007-x
    Liu Dujuan. 2004. The situation and analysis of salinity intrusion in coastal areas, China. Journal of Geological Hazards and Environment Preservation, 15(1): 31–36
    López M, Flores-Mateos L, Candela J. 2021. Tidal currents at the sills of the Northern Gulf of California. Continental Shelf Research, 227: 104513. doi: 10.1016/j.csr.2021.104513
    Mei Xuefei, Zhang Min, Dai Zhijun, et al. 2019. Large addition of freshwater to the tidal reaches of the Yangtze (Changjiang) River. Estuaries and Coasts, 42(3): 629–640. doi: 10.1007/s12237-019-00518-0
    Mohn C, Erofeeva S, Turnewitsch R, et al. 2013. Tidal and residual currents over abrupt deep-sea topography based on shipboard ADCP data and tidal model solutions for three popular bathymetry grids. Ocean Dynamics, 63(2−3): 195–208. doi: 10.1007/s10236-013-0597-1
    Muste M, Kim D, González-Castro J A. 2010. Near-transducer errors in ADCP measurements: experimental findings. Journal of Hydraulic Engineering, 136(5): 275–289. doi: 10.1061/(ASCE)HY.1943-7900.0000173
    Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8): 929–937
    Prandle D. 1982. The vertical structure of tidal currents and other oscillatory flows. Continental Shelf Research, 1(2): 191–207. doi: 10.1016/0278-4343(82)90004-8
    Pu Xiang, Shi J Z, Hu Guodong. 2017. The effect of stratification on the vertical structure of the tidal ellipse in the Changjiang River Estuary, China. Journal of Hydro-environment Research, 15: 75–94. doi: 10.1016/j.jher.2017.03.004
    Sánchez-Román A, Criado-Aldeanueva F, García-Lafuente J, et al. 2008. Vertical structure of tidal currents over Espartel and Camarinal sills, Strait of Gibraltar. Journal of Marine Systems, 74(1−2): 120–133. doi: 10.1016/j.jmarsys.2007.11.007
    Siagian H, Ismanto A, Putra T W L, et al. 2021. Stratification on the vertical structure of the tidal ellipse and power density estimation in the Larantuka Strait, East Flores Based on ADCP measurement data. IOP Conference Series: Earth and Environmental Science, 750(1): 012023. doi: 10.1088/1755-1315/750/1/012023
    Teague W J, Jacobs G A, Perkins H T, et al. 2002. Low-frequency current observations in the Korea/Tsushima Strait. Journal of Physical Oceanography, 32(6): 1621–1641. doi: 10.1175/1520-0485(2002)032<1621:LFCOIT>2.0.CO;2
    Tsimplis M N. 2000. Vertical structure of tidal currents over the Camarinal Sill at the Strait of Gibraltar. Journal of Geophysical Research, 105(C8): 19709–19728. doi: 10.1029/2000JC900066
    Ullman D S, Codiga D L. 2004. Seasonal variation of a coastal jet in the Long Island Sound outflow region based on HF radar and Doppler current observations. Journal of Geophysical Research, 109(C7): C07S06
    Wang Kai, Fang Guohong, Feng Shizuo. 1999. A 3-D numerical simulation of M2 tides and tidal currents in the Bohai Sea, the Huanghai Sea and the East China Sea. Haiyang Xuebao (in Chinese), 21(4): 1–13
    Wong K C, Münchow A. 1995. Buoyancy forced interaction between estuary and inner shelf: observation. Continental Shelf Research, 15(1): 59–88. doi: 10.1016/0278-4343(94)P1813-Q
    Wünchow A, Masse A K, Garvine R W. 1992. Astronomical and nonlinear tidal currents in a coupled estuary shelf system. Continental Shelf Research, 12(4): 471–498. doi: 10.1016/0278-4343(92)90087-Z
    Yang Yunping, Li Yitian, Han Jianqiao, et al. 2012. Variation of tide limit and tidal current limit in Yangtze Estuary and its impact on projects. Journal of Sediment Research, 37(6): 46–51
    Zhao Jianhu, Chen Zhigao, Zhang Hongmei, et al. 2016. Multiprofile discharge estimation in the tidal reach of Yangtze Estuary. Journal of Hydraulic Engineering, 142(12): 04016056. doi: 10.1061/(ASCE)HY.1943-7900.0001201
    Zhu Xueming, Bao Xianwen, Song Dehai, et al. 2012. Numerical study on the tides and tidal currents in Bohai Sea, Yellow Sea and East China Sea. Oceanologia et Limnologia Sinica, 43(6): 1103–1113
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  816
  • HTML全文浏览量:  235
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-26
  • 录用日期:  2021-11-14
  • 网络出版日期:  2021-12-23
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回