Vertical multiple-layer structure of temperature and turbulent diffusivity in the South China Sea

Xin He Changrong Liang Yang Yang Guiying Chen Xiaodong Shang Xiaozhou He Penger Tong

Xin He, Changrong Liang, Yang Yang, Guiying Chen, Xiaodong Shang, Xiaozhou He, Penger Tong. Vertical multiple-layer structure of temperature and turbulent diffusivity in the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(10): 14-21. doi: 10.1007/s13131-022-2005-5
Citation: Xin He, Changrong Liang, Yang Yang, Guiying Chen, Xiaodong Shang, Xiaozhou He, Penger Tong. Vertical multiple-layer structure of temperature and turbulent diffusivity in the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(10): 14-21. doi: 10.1007/s13131-022-2005-5

doi: 10.1007/s13131-022-2005-5

Vertical multiple-layer structure of temperature and turbulent diffusivity in the South China Sea

Funds: The National Key R&D Program of China under contract No. 2021YFC3101301; the Innovative Academy of Marine Information Technology, Chinese Academy of Sciences under contract No. CXBS202101; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0304; the National Natural Science Foundation of China under contract Nos 41876022, 41876023, 11772111 and 91952101; the Guangdong Natural Science Foundation of China under contract Nos 1914050004866 and 2020A1515011094; the Hong Kong Research Grants Council under contract Nos 16301719 and N-HKUST604/19; the Science, Technology and Innovation Commission of Shenzhen Municipality under contract No. KQJSCX20180328165817522; the Science and Technology Program of Guangzhou under contract No. 202102020707.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Sketch of the measurement locations of local temperature and velocity shear in the SCS: Stas s1–s8 denote the locations of temperature data from CTD measurements along the section of 18°N; Stas q1–q5 are for the CTD data in the SCS central basin; Sta. kj1 is for the CTD data at the slope of the northern SCS; Stas c1–c9 are for the velocity shear data from VMP-X measurements with $ z $ up to 3900 m. Asterisks denote velocity shear data from TurboMAP measurements where $ z < 500\;\mathrm{m} $. Gray lines denote isobaths in meters.

    Figure  2.  Overview of vertical profiles of temperature in the section of 18°N (a), the central basin of the SCS (b), and the slope of the northern SCS (c).

    Figure  3.  Measured $ {\kappa }_{\rho } \left(z\right) $ from 44 stations in the upper ocean (a) and direct kernel smoothing probability density distribution of the measured $ {\kappa }_{\rho } \left(z\right) $ in a for different values of $ z $ (b). The solid curve in a is the algebraic average value of $ {\kappa }_{\rho } $.

    Figure  4.  Statistics of diffusivity in 10 segmentations of measured ranges at 69 m (a), 209 m (b), 349 m (c) and 489 m (d), and statistics density of diffusivity in 100 segmentations of measured ranges at all depths (e). The black solid curve in e shows the generalized extreme value (GEV) probability density function (PDF).

    Figure  5.  Generalized extreme value probability density distribution with $ z $ (a) and the algebraic average values and weighted average value $ \left\langle{{\kappa }_{\rho }\left(z\right)}\right\rangle $ with $ z $ (b). The red dotted curve is the fitting curve of the weighted average value for 80 m<z<500 m.

    Figure  6.  The profiles of $ {\kappa }_{\rho } $ and the $ n $ values of the power-law fit for 1 000 m<z<3 000 m from Stas c1–c9 (a) and the weighted average and algebraic average values of $ {\kappa }_{\rho } $ in a (b). The red dotted curves are the power-law fitting curves. n1 and n2 are the $ n $ values of the power-law $ \left\langle{{\kappa }_{\rho }\left(z\right)}\right\rangle\sim {z}^{n} $ from the weighted average $ {\kappa }_{\rho } $ profile for $ 500\;\mathrm{m} < z < 1\;000\;\mathrm{m} $ and $ 1\;000\;\mathrm{m} < z < 3\;000\;\mathrm{m} $, respectively.

    Figure  7.  Measured temperature root-mean-square profile $\eta \left(z\right)$ in the section of 18°N (a), the central basin of the SCS (b) and the slope of the northern SCS (c). The red dotted curves are the power-law fitting curves. The inset in b shows an expanded view of the profile for $z > 1\;200$ m. p1, p2, p3 and p4 are the $ p $ values of the power-law $\eta \left(z\right) \sim {z}^{p}$ in the upper layer, transition layer, middle layer, and deep layer, respectively.

    Figure  8.  Measured temperature profiles (grey curves), averaged temperature profile (black curve), and fitting temperature profile of the transition layer (red dotted line) in the section of 18°N (a), the central basin in the SCS (b), and the slope of the northern SCS (c), respectively. The blue dotted line is the linear fitting temperature profile of the transition layer in slope.

    Figure  9.  Dimensionless temperature profiles of upper layer in the section of 18°N, the central basin in the SCS, and the slope of the northern SCS.

    Figure  10.  Dimensionless temperature profiles of middle layer in the section, basin, slope, and deep layer in the basin.

    Table  1.   Depth ranges of water layers

    Area or sourceZS of water layer/m
    ULTLMLDL
    Section of 18°N80−600600−780780 to NANNAN
    Central basin
    in the SCS
    65−470470−850850−17301730 to NAN
    Slope of the
    northern SCS
    80−580580−12701270 to NANNAN
    $ \left\langle{{\mathit{\kappa }}_{\mathit{\rho }}\left(\mathit{z}\right)}\right\rangle $80−500500−10001000 to NANNAN
    Model
    (Gan et al., 2016)
    0−750NAN750−15001500 to NAN
    Note: NAN means no data. UL: upper layer, TL: transition layer, ML: middle layer, and DL: deep layer.
    下载: 导出CSV

    Table  2.   Adjusted parameters for each layer

    RegionWater layerParameter
    $ \Delta \mathit{T} $/°C$ {\mathit{L}}_{\mathit{\lambda }} $/m
    Section of 18°NUL26.9330
    ML4.4618
    Central basin in the SCSUL27.8234
    ML3.8541
    Slope of the northern SCS DL0.5645
    UL29.8175
    ML0.9394
    下载: 导出CSV
  • Chu P C, Edmons N L, Fan Chenwu. 1999. Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. Journal of Physical Oceanography, 29(11): 2971–2989. doi: 10.1175/1520-0485(1999)029<2971:DMFTSC>2.0.CO;2
    Gan Jianping, Liu Zhiqiang, Hui C R. 2016. A three-layer alternating spinning circulation in the South China Sea. Journal of Physical Oceanography, 46(8): 2309–2315. doi: 10.1175/JPO-D-16-0044.1
    Golosov S, Zverev I, Shipunova E, et al. 2018. Modified parameterization of the vertical water temperature profile in the FLake model. Tellus A: Dynamic Meteorology and Oceanography, 70(1): 1–7
    Hu Jianyu, Kawamura H, Hong Huasheng, et al. 2000. A review on the currents in the South China Sea: Seasonal circulation, South China Sea Warm Current and Kuroshio Intrusion. Journal of Oceanography, 56(6): 607–624. doi: 10.1023/A:1011117531252
    Kitaigorodskii S A, Miropolskii Y Z. 1970. On the theory of active layer of open ocean. Atmospheric and Oceanic Physics, 6(2): 97–102
    Lan Jian, Zhang Ningning, Wang Yu. 2013. On the dynamics of the South China Sea deep circulation. Journal of Geophysical Research, 118(3): 1206–1210. doi: 10.1002/jgrc.20104
    Li Li, Qu Tangdong. 2006. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. Journal of Geophysical Research, 111(C5): C05017. doi: 10.1029/2005JC003164
    Liang Changrong, Chen Guiying, Shang Xiaodong. 2017. Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea. Ocean Dynamics, 67(5): 597–609. doi: 10.1007/s10236-017-1051-6
    Liu Qinyu, Yang Haijun, Liu Zhengyu. 2001. Seasonal features of the Sverdrup circulation in the South China Sea. Progress in Natural Science, 11(3): 202–206
    Munk W H. 1966. Abyssal recipes. Deep-Sea Research and Oceanographic Abstracts, 13(4): 707–730. doi: 10.1016/0011-7471(66)90602-4
    Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10(1): 83–89. doi: 10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
    Qu Tangdong, Girton J B, Whitehead J A. 2006. Deepwater overflow through Luzon Strait. Journal of Geophysical Research, 111(C1): C01002. doi: 10.1029/2005JC003139
    Shang Xiaodong, Liang Changrong, Chen Guiying. 2017a. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea. Ocean Science, 13(3): 503–519. doi: 10.5194/os-13-503-2017
    Shang Xiaodong, Qi Yongfeng, Chen Guiying, et al. 2017b. An expendable microstructure profiler for deep ocean measurements. Journal of Atmospheric and Oceanic Technology, 34(1): 153–165. doi: 10.1175/JTECH-D-16-0083.1
    Shaw P T, Chao S Y, Fu L L. 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanologica Acta, 22(1): 1–17. doi: 10.1016/S0399-1784(99)80028-0
    Shu Yeqiang, Xue Huijie, Wang Dongxiao, et al. 2014. Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. Journal of Geophysical Research, 119(5): 3012–3028. doi: 10.1002/2013JC009583
    Su Jilan. 2004. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research, 24(16): 1745–1760. doi: 10.1016/j.csr.2004.06.005
    Thorpe S A. 2005. The measurement of turbulence and mixing. In: Thorpe S A, ed. The Turbulent Ocean. Cambridge, UK: Cambridge University Press, 172–189
    Tian Jiwei, Yang Qingxuan, Liang Xinfeng, et al. 2006. Observation of Luzon Strait transport. Geophysical Research Letters, 33(19): L19607. doi: 10.1029/2006GL026272
    Tian Jiwei, Yang Qingxuan, Zhao Wei. 2009. Enhanced diapycnal mixing in the South China Sea. Journal of Physical Oceanography, 39(12): 3191–3203. doi: 10.1175/2009JPO3899.1
    Wang Guihua, Xie Shangping, Qu Tangdong, et al. 2011. Deep South China Sea circulation. Geophysical Research Letters, 38(5): L05601. doi: 10.1029/2010GL046626
    Wolk F, Yamazaki H, Seuront L, et al. 2002. A new free-fall profiler for measuring biophysical microstructure. Journal of Atmospheric and Oceanic Technology, 19(5): 780–793. doi: 10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2
    Wyrtki Klaus. 1961. Physical oceanography of the Southeast Asian waters: scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959–1961. NAGA Report, 2: 195. doi: 10.1530/jrf.0.0020195
    Xie Qiang, Xiao Jingen, Wang Dongxiao, et al. 2013. Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs. Chinese Science Bulletin, 58(32): 4000–4011. doi: 10.1007/s11434-013-5791-5
    Yuan Dongliang. 2002. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanologica Sinica, 21(2): 187–202
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  735
  • HTML全文浏览量:  256
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 录用日期:  2022-01-07
  • 网络出版日期:  2022-05-16
  • 刊出日期:  2022-10-27

目录

    /

    返回文章
    返回