On the variability of vertical eddy heat flux in the upper ocean

Tianshi Du Peiran Yang Zhao Jing

Tianshi Du, Peiran Yang, Zhao Jing. On the variability of vertical eddy heat flux in the upper ocean[J]. Acta Oceanologica Sinica, 2022, 41(10): 94-99. doi: 10.1007/s13131-022-2009-1
Citation: Tianshi Du, Peiran Yang, Zhao Jing. On the variability of vertical eddy heat flux in the upper ocean[J]. Acta Oceanologica Sinica, 2022, 41(10): 94-99. doi: 10.1007/s13131-022-2009-1

doi: 10.1007/s13131-022-2009-1

On the variability of vertical eddy heat flux in the upper ocean

Funds: The Taishan Scholar Fund under contract No. tsqn201909052.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Surface vertical relative vorticity $ {\zeta } $ normalized by local inertical frequency f on December 1, 2004. The black box denotes the selected area.

    Figure  2.  Vertical profiles of regional averaged annual mean (black), winter-half-year (October to March) mean (blue) and summer-half-year (April to September) mean (red) EVHF. Dash-dotted lines represent for four specific depths: 53 m, 180 m, 308 m and 554 m.

    Figure  3.  Horizontal distributions of $ \overline{\mathrm{E}\mathrm{V}\mathrm{H}\mathrm{F}} $ (a), $ {\left\langle{\overline{\mathrm{E}\mathrm{V}\mathrm{H}\mathrm{F}}}\right\rangle}_{\mathrm{h}} $ (b) and ${{\log}_{10}{\text{γ}} }_{{\rm{h}}}$ (c) at four chosen depths (53 m, 180 m, 308 m and 554 m).

    Figure  4.  Horizontal distributions of log10${\text{γ}}_{{\rm{w}}}$ (a) and log10 ${\text{γ}}_{{\rm{s}}}$ (b) at four chosen depths (53 m, 180 m, 308 m and 554 m).

    Figure  5.  Horizontal distributions of ${\overline{{\mathrm{E}\mathrm{V}\mathrm{H}\mathrm{F}}^{{\rm{sub}}}}}$ (a), ${\left\langle{\overline{{\mathrm{E}\mathrm{V}\mathrm{H}\mathrm{F}}^{{\rm{sub}}}}}\right\rangle}_{\mathrm{h}}$ (b), ${{{\rm{log}}}_{10}({\text{γ}} }_{{\rm{h}}})$ (c) and ${\left\langle{\overline{{\mathrm{E}\mathrm{V}\mathrm{H}\mathrm{F}}^{{\rm{sub}}}}}\right\rangle}_{\mathrm{h}}\;/\;{\left\langle{\overline{\mathrm{E}\mathrm{V}\mathrm{H}\mathrm{F}}}\right\rangle}_{\mathrm{h}}$ (d) at four chosen depths (53 m, 180 m, 308 m and 554 m) with subscript sub denotes anomalies from the 50 km×50 km running means, and e–h are as in a–d but for defining submesoscale anomalies by the perturbations from forth-order Butterworth filter with 14-d cut-off frequency.

  • Callies J, Barkan R, Garabato A N. 2020. Time scales of submesoscale flow inferred from a mooring array. Journal of Physical Oceanography, 50(4): 1065–1086. doi: 10.1175/JPO-D-19-0254.1
    Cao Haijin, Fox-Kemper B, Jing Zhiyou. 2021. Submesoscale eddies in the upper ocean of the Kuroshio Extension from high-resolution simulation: energy budget. Journal of Physical Oceanography, 51(7): 2181–2201
    Cao Haijin, Jing Zhiyou, Fox-Kemper B, et al. 2019. Scale transition from geostrophic motions to internal waves in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(12): 9364–9383. doi: 10.1029/2019JC015575
    Capet X, McWilliams J C, Molemaker M J, et al. 2008. Mesoscale to submesoscale transition in the California Current system: Part II. frontal processes. Journal of Physical Oceanography, 38(1): 44–64. doi: 10.1175/2007JPO3672.1
    Carton J A, Chepurin G A, Chen Ligang. 2018. SODA3: A new ocean climate reanalysis. Journal of Climate, 31(17): 6967–6983. doi: 10.1175/JCLI-D-18-0149.1
    Gaube P, Chelton D B, Samelson R M, et al. 2015. Satellite observations of mesoscale eddy-induced Ekman Pumping. Journal of Physical Oceanography, 45(1): 104–132. doi: 10.1175/JPO-D-14-0032.1
    Griffies S M, Hallberg R W. 2000. Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Monthly Weather Review, 128(8): 2935–2946. doi: 10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2
    Griffies S M, Winton M, Anderson W G, et al. 2015. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. Journal of Climate, 28(3): 952–977. doi: 10.1175/JCLI-D-14-00353.1
    Gula J, Molemaker M J, McWilliams J C. 2014. Submesoscale cold filaments in the Gulf Stream. Journal of Physical Oceanography, 44(10): 2617–2643. doi: 10.1175/JPO-D-14-0029.1
    Haidvogel D B, Arango H G, Hedstrom K, et al. 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynamics of Atmospheres and Oceans, 32(3–4): 239–281. doi: 10.1016/S0377-0265(00)00049-X
    Jing Zhao, Wang Shengpeng, Wu Lixin, et al. 2020. Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Science Advances, 6(31): eaba7880. doi: 10.1126/sciadv.aba7880
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403. doi: 10.1029/94RG01872
    Large W G, Yeager S. 2004. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux (No. NCAR/TN-460+STR). University Corporation for Atmospheric Research,
    Qiu Bo, Chen Shuiming, Klein P, et al. 2020. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion. Journal of Physical Oceanography, 50(1): 55–79. doi: 10.1175/JPO-D-19-0172.1
    Rohr T, Harrison C, Long M C, et al. 2020. Eddy-modified iron, light, and phytoplankton cell division rates in the simulated Southern Ocean. Global Biogeochemical Cycles, 34(6): e2019GB006380
    Rudnick D L. 2001. On the skewness of vorticity in the upper ocean. Geophysical Research Letters, 28(10): 2045–2048. doi: 10.1029/2000GL012265
    Saha S, Moorthi S, Pan H L, et al. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8): 1015–1058. doi: 10.1175/2010BAMS3001.1
    Sasaki H, Klein P, Qiu Bo, et al. 2014. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nature Communications, 5: 5636. doi: 10.1038/ncomms6636
    Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
    Shcherbina A Y, D’Asaro E A, Lee C M, et al. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophysical Research Letters, 40(17): 4706–4711. doi: 10.1002/grl.50919
    Su Zhan, Wang Jinbo, Klein P, et al. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9: 775. doi: 10.1038/s41467-018-02983-w
    Waterman S, Jayne S R. 2011. Eddy-mean flow interactions in the along-stream development of a Western Boundary Current Jet: an idealized model study. Journal of Physical Oceanography, 41(4): 682–707. doi: 10.1175/2010JPO4477.1
    Yang Peiran, Jing Zhao, Sun Bingrong, et al. 2021. On the upper-ocean vertical eddy heat transport in the Kuroshio Extension: Part I. variability and dynamics. Journal of Physical Oceanography, 51(1): 229–246. doi: 10.1175/JPO-D-20-0068.1
    Yu Xiaolong, Garabato A C N, Martin A P, et al. 2019. An annual cycle of submesoscale vertical flow and restratification in the upper ocean. Journal of Physical Oceanography, 49(6): 1439–1461. doi: 10.1175/JPO-D-18-0253.1
    Zhang Zhiwei, Zhang Xincheng, Qiu Bo, et al. 2021. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays. Journal of Physical Oceanography, 51(1): 187–206. doi: 10.1175/JPO-D-20-0100.1
  • 加载中
图(5)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  73
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 录用日期:  2022-02-05
  • 网络出版日期:  2022-06-29
  • 刊出日期:  2022-10-27

目录

    /

    返回文章
    返回