Seasonal variation of atmospheric coupling with oceanic mesoscale eddies in the North Pacific Subtropical Countercurrent

Bowen Sun Baofu Li Jingyu Yan Yuqi Zhou Shuo Zhou

Bowen Sun, Baofu Li, Jingyu Yan, Yuqi Zhou, Shuo Zhou. Seasonal variation of atmospheric coupling with oceanic mesoscale eddies in the North Pacific Subtropical Countercurrent[J]. Acta Oceanologica Sinica, 2022, 41(10): 109-118. doi: 10.1007/s13131-022-2022-4
Citation: Bowen Sun, Baofu Li, Jingyu Yan, Yuqi Zhou, Shuo Zhou. Seasonal variation of atmospheric coupling with oceanic mesoscale eddies in the North Pacific Subtropical Countercurrent[J]. Acta Oceanologica Sinica, 2022, 41(10): 109-118. doi: 10.1007/s13131-022-2022-4

doi: 10.1007/s13131-022-2022-4

Seasonal variation of atmospheric coupling with oceanic mesoscale eddies in the North Pacific Subtropical Countercurrent

Funds: The Shandong Provincial Natural Science Foundation under contract No. ZR2021YQ28; the Provincial College Student Innovation Training Project under contract No. S202110446040.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Climatological monthly EKE (black dots and curve) spatially averaged in STCC area (15°–28°N, 123°–170°E). Gray shading indicates standard deviation of EKE.

    Figure  2.  Seasonal variation of eddy SST anomaly (color shading) and sea surface height (SSH) anomaly (contours; unit: cm; interval: 3 cm) structures. Upper (bottom) panels are for cyclonic (anticyclonic) eddies. The left panels are for July and the right are for January. The dotted areas mean the t-test is passed at a 95% confidence level.

    Figure  3.  Meridional component of eddy rotational velocity in the east-west section across composite eddy center in STCC.

    Figure  4.  Seasonal variation of composite SST anomaly (contours, unit: °C) and WSA (color shading) structures associated with mesoscale eddies in July for summer and January for winter.

    Figure  5.  Composite latent heat flux anomaly (color shading) on the sea surface and SST anomaly (contours, unit: °C) of cyclonic eddies (a, b) and anticyclonic eddies (c, d).

    Figure  6.  Composite sensible heat flux anomaly (color shading) on the sea surface and SST anomaly (contours, unit: °C) of cyclonic eddies (a, b) and anticyclonic eddies (c, d).

    Figure  7.  Composite rain rate anomaly (color shading) and SST anomaly (contours, unit: °C) of cyclonic eddies (a, b) and anticyclonic eddies (c, d).

    Figure  8.  Correlations between SST anomaly and atmospheric variable anomaly for cyclonic (blue) and anticyclonic (red) eddies, respectively. Blue (red) shading is the standard deviation for cyclonic (anticyclonic) eddy. Variables from left to right panels: sea surface wind speed anomaly, rain rate anomaly, latent heat flux anomaly, and sensible heat flux anomaly. The slope (s1, s2) of straight lines and correlation coefficients (r1, r2) between SST anomaly and atmospheric parameters overlying the mesoscale eddies are listed at the bottom of each panel. (s1, r1) are for cyclonic eddies, and (s2, r2) are for anticyclonic eddies. The anomalous variables are obtained from the pre-filtered parameters within the scope of eddies.

    Figure  9.  Climatological seasonal background SST (isolines, unit: °C) and SST gradient (color shading) (a, c), wind directional steadiness (color shading, unit: 1) and wind speed (isolines, m/s) (b, d).

    Figure  10.  Temporal (upper panel) and spatial (lower panel) correlation coefficients between wind divergence item and downwind SST gradient (a, c) and SST Laplacian (b, d) item. A 10-m wind field is used. The monthly average magnitude of the mesoscale temperature gradient (MTG) is represented as red circles and curve in c, and gray shading in c and d is the standard deviation of spatial correlation coefficient.

    Figure  11.  Spatial correlation coefficient between downwind SST gradient and wind divergence at vertical levels from 1 000 hPa to 750 hPa in July and January. The red and blue shadings are the standard deviation of the correlation coefficient for July and January, respectively.

    Figure  12.  Vertical east-west section across the eddy center of composite TKE (shading) of cyclonic and anticyclonic eddies.

  • Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119,
    Chelton D B, Schlax M G, Samelson R M. 2007. Summertime coupling between sea surface temperature and wind stress in the California Current System. Journal of Physical Oceanography, 37(3): 495–517. doi: 10.1175/JPO3025.1
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    Chelton D B, Xie S P. 2010. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23(4): 52–69. doi: 10.5670/oceanog.2010.05
    Desbiolles F, Alberti M, Hamouda M E, et al. 2021. Links between sea surface temperature structures, clouds and rainfall: Study case of the Mediterranean Sea. Geophysical Research Letters, 48(10): e2020GL091839. doi: 10.1029/2020gl091839
    Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5: 3294. doi: 10.1038/ncomms4294
    Feng Ling, Liu Chuanyu, Köhl A, et al. 2021. Four types of baroclinic instability waves in the global oceans and the implications for the vertical structure of mesoscale eddies. Journal of Geophysical Research: Oceans, 126(3): e2020JC016966. doi: 10.1029/2020JC016966
    Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608–612. doi: 10.1038/ngeo1863
    Frenger I, Münnich M, Gruber N, et al. 2015. Southern Ocean eddy phenomenology. Journal of Geophysical Research: Oceans, 120(11): 7413–7449. doi: 10.1002/2015jc011047
    Gaube P, Chelton D B, Samelson R M, et al. 2015. Satellite observations of mesoscale eddy-induced Ekman Pumping. Journal of Physical Oceanography, 45(1): 104–132. doi: 10.1175/jpo-d-14-0032.1
    Hayes S P, McPhaden M J, Wallace J M. 1989. The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. Journal of Climate, 2(12): 1500–1506. doi: 10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2
    He Yinghui, Feng Ming, Xie Jieshuo, et al. 2021. Revisit the vertical structure of the eddies and eddy-induced transport in the Leeuwin Current system. Journal of Geophysical Research: Oceans, 126(4): e2020JC016556. doi: 10.1029/2020JC016556
    Huang Jing, Zhang Yang, Yang Xiuqun, et al. 2020. Impacts of North Pacific subtropical and subarctic oceanic frontal zones on the wintertime atmospheric large-scale circulations. Journal of Climate, 33(5): 1897–1914. doi: 10.1175/JCLI-D-19-0308.1
    Ji Jinlin, Ma Jing, Dong Changming, et al. 2020. Regional dependence of atmospheric responses to oceanic eddies in the North Pacific Ocean. Remote Sensing, 12(7): 1161. doi: 10.3390/rs12071161
    Lambaerts J, Lapeyre G, Plougonven R, et al. 2013. Atmospheric response to sea surface temperature mesoscale structures. Journal of Geophysical Research: Atmospheres, 118(17): 9611–9621. doi: 10.1002/jgrd.50769
    Lindzen R S, Nigam S. 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. Journal of the Atmospheric Sciences, 44(17): 2418–2436. doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
    Liu Haoya, Chen Shumin, Li Weibiao, et al. 2019. Atmospheric response to oceanic cold eddies west of Luzon in the northern South China Sea. Atmosphere, 10(5): 255. doi: 10.3390/atmos10050255
    Liu Yu, Dong Changming, Guan Yuping, et al. 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 68: 54–67. doi: 10.1016/j.dsr.2012.06.001
    Ma Xiaohui, Jing Zhao, Chang Ping, et al. 2016. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535(7613): 533–537. doi: 10.1038/nature18640
    Ma Jing, Xu Haiming, Dong Changming, et al. 2015. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Atmospheres, 120(13): 6313–6330. doi: 10.1002/2014jd022930
    Qiu Bo. 1999. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10): 2471–2486. doi: 10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2
    Qiu Bo, Chen Shuimin. 2010. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography, 40(1): 213–225. doi: 10.1175/2009JPO4285.1
    Ramp S R, Colosi J A, Worcester P F, et al. 2017. Eddy properties in the Subtropical Countercurrent, western Philippine Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 125: 11–25. doi: 10.1016/j.dsr.2017.03.010
    Schlax M G, Chelton D B. 2008. The influence of mesoscale eddies on the detection of quasi-zonal jets in the ocean. Geophysical Research Letters, 35(24): L24602. doi: 10.1029/2008gl035998
    Small R J, deSzoeke S P, Xie S P, et al. 2008. Air-sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3–4): 274–319,
    Sun Shuangwen, Fang Yue, Zu Yongcan, et al. 2020a. Seasonal characteristics of mesoscale coupling between the sea surface temperature and wind speed in the South China Sea. Journal of Climate, 33(2): 625–638. doi: 10.1175/jcli-d-19-0392.1
    Sun Bowen, Liu Chuanyu, Wang Fan. 2019. Global meridional eddy heat transport inferred from Argo and altimetry observations. Scientific Reports, 9(1): 1345. doi: 10.1038/s41598-018-38069-2
    Sun Bowen, Liu Chuanyu, Wang Fan. 2020b. Eddy induced SST variation and heat transport in the western North Pacific Ocean. Journal of Oceanology and Limnology, 38(1): 1–15. doi: 10.1007/s00343-019-8255-1
    Sun Jia, Wang Guihua, Xiong Xuejun, et al. 2020c. Impact of warm mesoscale eddy on tropical cyclone intensity. Acta Oceanologica Sinica, 39(8): 1–13. doi: 10.1007/s13131-020-1617-x
    Xu Lixiao, Xie Shangping, Jing Zhao, et al. 2017a. Observing subsurface changes of two anticyclonic eddies passing over the Izu-Ogasawara Ridge. Geophysical Research Letters, 44(4): 1857–1865. doi: 10.1002/2016GL072163
    Xu Lixiao, Xie Shangping, Liu Qinyu, et al. 2017b. Evolution of the North Pacific Subtropical Mode Water in anticyclonic eddies. Journal of Geophysical Research: Oceans, 122(12): 10118–10130. doi: 10.1002/2017JC013450
    Xu Quanqian, Xu Haiming, Ma Jing. 2018. Air-sea relationship associated with mesoscale oceanic eddies over the subtropical North Pacific in summer. Chinese Journal of Atmospheric Sciences, 42(6): 1191–1207. doi: 10.3878/j.issn.1006-9895.1711.17180
    Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    Zhan Peng, Guo Daquan, Hoteit I. 2020. Eddy-induced transport and kinetic energy budget in the Arabian Sea. Geophysical Research Letters, 47(23): e2020GL090490. doi: 10.1029/2020gl090490
    Zhang Zhiwei, Zhong Yisen, Tian Jiwei, et al. 2014. Estimation of eddy heat transport in the global ocean from Argo data. Acta Oceanologica Sinica, 33(1): 42–47. doi: 10.1007/s13131-014-0421-x
    Zhu Yannan, Li Yuanlong, Wang Fan, et al. 2022. Weak mesoscale variability in the optimum interpolation sea surface temperature (OISST)-AVHRR-Only Version 2 data before 2007. Remote Sensing, 14(2): 409. doi: 10.3390/rs14020409
    Zu Yongcan, Sun Shuangwen, Zhao Wei, et al. 2019. Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea. Acta Oceanologica Sinica, 38(4): 29–38. doi: 10.1007/s13131-018-1222-4
  • 加载中
图(12)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  133
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 录用日期:  2022-04-04
  • 网络出版日期:  2022-08-16
  • 刊出日期:  2022-10-27

目录

    /

    返回文章
    返回