Construction and analysis of a coral reef trophic network for Qilianyu Islands, Xisha Islands

Xiaofan Hong Zuozhi Chen Jun Zhang Yan’e Jiang Yuyan Gong Yancong Cai Yutao Yang

Xiaofan Hong, Zuozhi Chen, Jun Zhang, Yan’e Jiang, Yuyan Gong, Yancong Cai, Yutao Yang. Construction and analysis of a coral reef trophic network for Qilianyu Islands, Xisha Islands[J]. Acta Oceanologica Sinica, 2022, 41(12): 58-72. doi: 10.1007/s13131-022-2047-8
Citation: Xiaofan Hong, Zuozhi Chen, Jun Zhang, Yan’e Jiang, Yuyan Gong, Yancong Cai, Yutao Yang. Construction and analysis of a coral reef trophic network for Qilianyu Islands, Xisha Islands[J]. Acta Oceanologica Sinica, 2022, 41(12): 58-72. doi: 10.1007/s13131-022-2047-8

doi: 10.1007/s13131-022-2047-8

Construction and analysis of a coral reef trophic network for Qilianyu Islands, Xisha Islands

Funds: The National Key Research and Development Program of China under contract No. 2018YFC1406502; the National Natural Science Foundation of China under contract No. 31902374; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0605; the Central Public-Interest Scientific Institution Basal Research Fund of Chinese Academy of Fishery Sciences under contract No. 2020TD05.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The study area (a) and the locations of the sampling stations (b). Black triangle markers are the sampling stations; red dotted lines represent the rang of table reefs.

    Figure  2.  Qilianyu Islands coral reefs ecosystem flow diagram. Circles are proportional to the functional group biomass in the system.

    Figure  3.  Lindeman spine representing of trophic flows from Qilianyu Islands coral reefs Ecopath model. P: primary producers; D: detritus; II–V: trophic levels; TST: total system throughput; TE: transfer efficiencies; TL: trophic level.

    Figure  4.  Qilianyu Islands coral reefs Ecopath model plot of functional group niche overlap. Point colors represent geometric mean of “prey overlap index” and “predator overlap index” (color scale to right); functional groups: 4, 7 small carnivorous and herbivorous fish; 14, 15 coral and zooplankton; 11, 13 other echinoderms and crustaceans.

    Figure  5.  Qilianyu Islands coral reefs model mixed trophic impact analysis. Positive (blue) and negative (red) values of mixed trophic impact index represent positive and negative effects, respectively. LCF, large carnivorous fish; MCF, medium carnivorous fish; SCF, small carnivorous fish; OF, omnivorous fish; CEF, coral-eating fish; HF, herbivorous fish; CTS, crown of thorns starfish; OE, other echinoderms; OM, other mollusca; SBI, small benthic invertebrates.

    Figure  6.  Keystone index for Qilianyu Islands coral reefs model functional groups. For each functional group, the keystone index (y-axis) is reported against their relative total impact on the trophic web (x-axis). Overall effects are relative to the maximum effect measured; the x-axis scale is between 0.0 and 1.0. The functional groups are ordered by decreasing keystone index; therefore, the key functional groups are those ranking among the first groups. Circles are proportional to the functional group biomass in the system.

    Table  1.   Qilianyu Islands coral reefs Ecopath model functional groups

    Group nameComposition of dominant species
    Chondrichthyesray, skate, shark
    Large carnivorous fishAprion virescens, Pristipomoides filamentosus, Aphareus rutilans, large grouper, etc.
    Medium carnivorous fishLabridae, Lethrinidae, Priacanthidae, Mullidae, etc.
    Small carnivorous fishHolocentridae, Apogonidae, Cephalopholis, Epinephelus merra, etc.
    Omnivorous fishPomacentridae, Balistidae, etc.
    Coral-eating fishScaridae, Chaetodontidae, etc.
    Herbivorous fishPomacanthidae, Acanthuridae, Siganus, etc.
    TurtlesChelonia mydas, Eretmochelys imbricata, Dermochelys coriacea, etc.
    Crown-of-thorns starfishAcanthaster planci
    Giant tritonCharonia tritonis
    Other echinodermsurchin, cucumber, brittle star, starsish
    Other molluscabivalve, snail, etc.
    Crustaceanscrab & shrimp
    CoralPocillopora damicornis, Pocillopora verrucosa, Acropora humilis, Porites lutea, etc.
    Zooplanktoncopepoda, planula, juvenile fish, etc.
    Small benthic invertebratespolychaeta, etc.
    Macroalgaecoralline algae
    Turfturf
    PhytoplanktonBacillariopyta, Pyrrophyta, Chrysophyta, Cyanophyta, etc.
    Detritusparticulate organic carbon & dissolved organic carbon
    下载: 导出CSV

    Table  2.   Estimates of Qilianyu Islands coral reefs ecosystem food intake for trophic groups

    No.Prey (predator)12345678910111213141516
    1chondrichthyes0.01000000000000000
    2large carnivorous fish0.050.00800000000000000
    3medium carnivorous fish0.140.10.0090000000000000
    4small carnivorous fish0.120.120.130.030.01900000000000
    5omnivorous fish0.120.050.060.020.0100000000.005000
    6coral-eating fish0.10.050.040.010.0600000000000
    7herbivorous fish0.10.190.160.030.0500000000.005000
    8turtles0.001000000000000000
    9crown-of-thorns starfish00.0010.00100.00100000.15000.001000
    10giant triton1×10−50.000 500000000000000
    11other echinoderms00.060.060.050.0500000.4000.005000
    12other mollusca0.050.10.120.10.1000.100.300.010.05000
    13crustaceans0.120.120.140.150.12000.0500000.012000
    14coral00000.050.40.100.800.050.060000
    15zooplankton0000.280.100.050.100.150.150.250.20.10.010.1
    16small benthic invertebrates00.050.180.20.1000000.0500.133000
    17macroalgae00000.130.30.30.30.0700.20.20.100.050
    18turf00000.110.150.30.40.0300.150.160.13500.090
    19phytoplankton0000.03000.100.100.120.220.1540.30.60.15
    20detritus0000.10.10.150.150000.280.10.20.40.250.75
    Import0.1890.150 050.100000.05000000.200
    Sum1.000 010.999 5511111111111111
    下载: 导出CSV

    Table  3.   Basic Ecopath model functional group input and estimated output parameters

    No.Group nameTLB/(t·km−2·a−1)P:B/(a−1)Q:B/(a−1)Un. QCatchEEP/QNEOI
    1chondrichthyes3.800.0970.254.720.200.1890.050.070.41
    2large carnivorous fish3.570.4300.796.640.200.2000.7230.120.150.30
    3medium carnivorous fish3.423.7811.008.500.202.5000.8300.120.150.16
    4small carnivorous fish3.071.7004.0013.500.200.8000.9420.300.370.22
    5omnivorous fish2.841.1034.5016.300.201.5000.9810.280.350.40
    6coral-eating fish2.451.4152.4020.000.200.2000.8780.120.150.30
    7herbivorous fish2.168.1563.0028.000.401.8000.3970.110.180.15
    8turtles2.320.0200.143.500.200.0020.8780.040.050.29
    9crown-of-thorns starfish2.900.4851.205.000.200.3000.240.300.20
    10giant triton3.340.0021.224.080.200.0010.9500.300.370.07
    11other echinoderms2.263.0352.207.800.200.5000.7860.280.350.21
    12other mollusca2.338.7002.505.600.206.0000.9550.450.560.24
    13crustaceans2.464.3003.2028.000.250.5000.9040.110.150.31
    14coral2.1319.5743.0010.000.200.7000.300.380.13
    15zooplankton2.013.51076.00242.500.300.4160.310.450.01
    16small benthic invertebrates2.103.91112.0060.000.250.6290.200.270.09
    17macroalgae1.0022.00018.000.375
    18turf1.0030.00025.000.239
    19phytoplankton1.008.817231.000.324
    20detritus1.00315.0000.1870.24
    Note: B: biomass; OI: omnivory index; TL: trophic level; P/B: production/biomass; Q/B: consumption/biomass; Un. Q: unassim. consumption; EE: ecotrophic efficiency; P/Q: production/consumption; NE: net efficiency. Values in bold are estimated by the present model. − reprsents no data.
    下载: 导出CSV

    Table  4.   Distribution of Qilianyu Islands coral reefs ecosystem flow

    Trophic level
    Consumption
    by predators
    ExportFlow to
    detritus
    RespirationThroughput
    V0.0700.1250.4061.1961.798
    IV1.6501.2206.12115.04024.030
    III23.7305.44556.840110.500196.500
    II194.7007.207658.500713.6001 574.000
    I1 533.0002 371.0002 195.0000.0006 099.000
    Sum1 754.0002 385.0002 916.000840.4007 896.000
    下载: 导出CSV

    Table  5.   Transfer efficiency of Qilianyu Islands coral reefs ecosystem trophic levels

    SourceTrophic level
    IIIIIIVV
    Producer12.3715.5311.8411.1
    Detritus13.6413.7312.1310.43
    All flows12.8314.8411.9410.87
    Note: Proportion of total flow originating from detritus: 0.45; transfer efficiencies (mTE, calculated as geometric mean for TL II–IV); from primary producers: 13.15%; from detritus: 13.14%; total: 13.15%.
    下载: 导出CSV

    Table  6.   Comparison of Qilianyu Islands coral reefs ecosystem characteristics with other coral reefs

    AreaQilianyu
    Islands
    Hawaii
    Island
    Cocos
    Island
    Darwin &Wolf
    Island
    Nanwan
    Bay
    Uvea
    Atoll
    Caribbean Sea
    Cayos CochinosMedia Luna
    Group number2026313218252221
    Sum of all consumption/(t·km−2·a−1)1 8105 33222 9788 8808 37329231 01327 381
    Sum of all exports/(t·km−2·a−1)2 3855202034416 20018581 7009 779
    Sum of all respiratory flows/(t·km−2·a−1)8403 47712 0505 2784 6298617 09616 264
    Sum of all flows into detritus/(t·km−2·a−1)2 9161 7006 1362 15120 1153469017 881
    TST/(t·km−2·a−1)7 95211 03041 18416 65249 317909220 23271 305
    Sum of all production/(t·km−2·a−1)3 6429785 23521 55332510 651031 684
    TLc2.622.593.553.022.403.503.642.97
    GE0.00 40.000 092.00×10−60.0010.000 360.000 151.01×10−91.20×10−5
    Net p.p./(t·km−2·a−1)3 182.733 895.094 583.593 408.0020 199.00265.3098 796.0026 043.00
    TPP/TR3.791.120.380.654.403.105.781.60
    NSP/(t·km−2·a−1)2 342.30417.78−7 466.37−1 898.0015 570.00179.4081 700.009 779.00
    TPP/TB26.305.572.323.649.9019.9511.8210.21
    TB:TST/(a−1)0.0150.060.050.060.040.010.040.04
    Total catch/(t·km−2·a−1)14.0030.3500.0103.8417.3000.0391.00×10−40.311
    CI0.330.170.150.300.26
    SOI0.210.400.320.210.20
    FCI/%3.646.136.504.753.501.606.95
    MPL2.476.655.65
    A:C/%27.7131.5024.8029.8047.0031.00
    mTE/%13.1512.2010.707.80
    Note: GE: Gross efficiency (total catch/net p.p.); net p.p.: calculated total net primary production; NSP: net system production; TST: total system throughput; TLc: mean trophic level of the catch; TPP/TR: total primary production/total respiration; NSP: net system production; TPP/TB: total primary production/total biomass; TB/TST: total biomass/total throughput; CI: connectance index; SOI: system omnivory index; FCI: Finn's cycling index; MPL: Finn's mean path length; A/C: ascendency/capacity; mTE: mean transfer efficiencies. −represent no data.
    下载: 导出CSV
  • Adey W H, Goertemiller T. 1987. Coral reef algal turfs: master producers in nutrient poor seas. Phycologia, 26(3): 374–386. doi: 10.2216/i0031-8884-26-3-374.1
    Ainsworth C H, Mumby P J. 2015. Coral–algal phase shifts alter fish communities and reduce fisheries production. Global Change Biology, 21(1): 165–172. doi: 10.1111/gcb.12667
    Albouy C, Mouillot D, Rocklin D, et al. 2010. Simulation of the combined effects of artisanal and recreational fisheries on a Mediterranean MPA ecosystem using a trophic model. Marine Ecology Progress Series, 412: 207–221. doi: 10.3354/meps08679
    Allen K R. 1971. Relation between production and biomass. Journal of the Fisheries Research Board of Canada, 28(10): 1573–1581. doi: 10.1139/f71-236
    Alva-Basurto J C, Arias-González J E. 2014. Modelling the effects of climate change on a Caribbean coral reef food web. Ecological Modelling, 289: 1–14. doi: 10.1016/j.ecolmodel.2014.06.014
    Anthony K R N, Kline D I, Diaz-Pulido G, et al. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 105(45): 17442–17446. doi: 10.1073/pnas.0804478105
    Arias-González J E, Delesalle B, Salvat B, et al. 1997. Trophic functioning of the Tiahura reef sector, Moorea Island, French Polynesia. Coral Reefs, 16(4): 231–246. doi: 10.1007/s003380050079
    Arias-González J E, Nuñez-Lara E, González-Salas C, et al. 2004. Trophic models for investigation of fishing effect on coral reef ecosystems. Ecological Modelling, 172(2–4): 197–212,
    Bahr K D, Rodgers K S, Jokiel P L, et al. 2020. Pulse sediment event does not impact the metabolism of a mixed coral reef community. Ocean & Coastal Management, 184: 105007. doi: 10.1016/j.ocecoaman.2019.105007
    Baums I B. 2008. A restoration genetics guide for coral reef conservation. Molecular Ecology, 17(12): 2796–2811. doi: 10.1111/j.1365-294X.2008.03787.x
    Bello-Pineda J, Ponce-Hernández R, Liceaga-Correa M A. 2006. Incorporating GIS and MCE for suitability assessment modelling of coral reef resources. Environmental Monitoring and Assessment, 114(1–3): 225–256,
    Bellwood D R, Hughes T P, Folke C, et al. 2004. Confronting the coral reef crisis. Nature, 429(6994): 827–833. doi: 10.1038/nature02691
    Botha E J, Brando V E, Anstee J M, et al. 2013. Increased spectral resolution enhances coral detection under varying water conditions. Remote Sensing of Environment, 131: 247–261. doi: 10.1016/j.rse.2012.12.021
    Bozec Y M, Gascuel D, Kulbicki M. 2004. Trophic model of lagoonal communities in a large open atoll (Uvea, Loyalty Islands, New Caledonia). Aquatic Living Resources, 17(2): 151–162. doi: 10.1051/alr:2004024
    Bozec Y M, O’Farrell S, Bruggemann J H, et al. 2016. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 113(16): 4536–4541. doi: 10.1073/pnas.1601529113
    Brandl S J, Emslie M J, Ceccarelli D M, et al. 2016. Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere, 7(11): e01557. doi: 10.1002/ecs2.1557
    Brown P C, Painting S J, Cochrane K L. 1991. Estimates of phytoplankton and bacterial biomass and production in the northern and southern Benguela ecosystems. South African Journal of Marine Science, 11(1): 537–564. doi: 10.2989/025776191784287673
    Cáceres I, Ortiz M, Cupul-Magaña A L, et al. 2016. Trophic models and short-term simulations for the coral reefs of Cayos Cochinos and Media Luna (Honduras): a comparative network analysis, ecosystem development, resilience, and fishery. Hydrobiologia, 770(1): 209–224. doi: 10.1007/s10750-015-2592-7
    Cheal A J, MacNeil M A, Cripps E, et al. 2010. Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs, 29(4): 1005–1015. doi: 10.1007/s00338-010-0661-y
    Chen Zuozhi, Qiu Yongsong. 2010. Assessment of the food-web structure, energy flows, and system attribute of northern South China Sea ecosystem. Acta Ecologica Sinica, 30(18): 4855–4865
    Chen Zuozhi, Xu Shannan, Qiu Yongsong. 2015. Using a food-web model to assess the trophic structure and energy flows in Daya Bay, China. Continental Shelf Research, 111: 316–326. doi: 10.1016/j.csr.2015.08.013
    Chen Xiaoyan, Yu Kefu, Huang Xueyong, et al. 2019. Atmospheric nitrogen deposition increases the possibility of macroalgal dominance on remote coral reefs. Journal of Geophysical Research: Biogeosciences, 124(5): 1355–1369. doi: 10.1029/2019jg005074
    Chen Biao, Yu Kefu, Liao Zhiheng, et al. 2021. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. Science of the Total Environment, 765: 142690. doi: 10.1016/j.scitotenv.2020.142690
    Chesher R H. 1969. Destruction of Pacific corals by the sea star Acanthaster planci. Science, 165(3890): 280–283. doi: 10.1126/science.165.3890.280
    Chong-Seng K M, Nash K L, Bellwood D R, et al. 2014. Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs, 33(2): 409–419. doi: 10.1007/s00338-014-1134-5
    Christensen V, Pauly D. 1992. ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling, 61(3–4): 169–185,
    Christensen V, Walters C J. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling, 172(2–4): 109–139,
    Christensen V, Walters C J, Pauly D. 2005. Ecopath with Ecosim: A User’s Guide. Vancouver: University of British Columbia
    Christensen V, Walters C, Pauly D, et al. 2008. Ecopath with Ecosim Version 6 User Guide. Vancouver: University of British Columbia
    Cook C B, Logan A, Ward J, et al. 1990. Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event. Coral Reefs, 9(1): 45–49. doi: 10.1007/BF00686721
    Darling E S, D’Agata S. 2017. Coral reefs: fishing for sustainability. Current Biology, 27(2): R65–R68. doi: 10.1016/j.cub.2016.12.005
    Darnell R M. 1967. Organic detritus in relation to the estuarine ecosystem. In: Lauff G H, ed. Estuaries. Washington: American Association for the Advancement of Science, 376–382
    Dove S G, Brown K T, Van Den Heuvel A, et al. 2020. Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Communications Earth & Environment, 1(1): 55. doi: 10.1038/s43247-020-00054-x
    Du Jianguo, Makatipu P C, Tao L S R, et al. 2020. Comparing trophic levels estimated from a tropical marine food web using an ecosystem model and stable isotopes. Estuarine, Coastal and Shelf Science, 233: 106518,
    Du Feiyan, Wang Xuehui, Lin Zhaojin. 2015. The characteristics of summer zooplankton community in the Meiji coral reef, Nansha Islands, South China Sea. Acta Ecologica Sinica, 35(4): 1014–1021
    Eyre B D, Cyronak T, Drupp P, et al. 2018. Coral reefs will transition to net dissolving before end of century. Science, 359(6378): 908–911. doi: 10.1126/science.aao1118
    Fabricius K E, Okaji K, De’ath G. 2010. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs, 29(3): 593–605. doi: 10.1007/s00338-010-0628-z
    Ferrier-Pagès C, Hoogenboom M, Houlbrèque F. 2011. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N, eds. Coral Reefs: An Ecosystem in Transition. Dordrecht: Springer,
    Finn J T. 1976. Measures of ecosystem structure and function derived from analysis of flows. Journal of Theoretical Biology, 56(2): 363–380. doi: 10.1016/S0022-5193(76)80080-X
    Fox H E, Caldwell R L. 2006. Recovery from blast fishing on coral reefs: a tale of two scales. Ecological Applications, 16(5): 1631–1635. doi: 10.1890/1051-0761(2006)016[1631:RFBFOC]2.0.CO;2
    Frank K T, Petrie B, Shackell N L. 2007. The ups and downs of trophic control in continental shelf ecosystems. Trends in Ecology & Evolution, 22(5): 236–242. doi: 10.1016/j.tree.2007.03.002
    Gaither M R, Bowen B W, Bordenave T R, et al. 2011. Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the Indo-Pacific Barrier with contemporary overlap in the Coral Triangle. BMC Evolutionary Biology, 11: 189. doi: 10.1186/1471-2148-11-189
    Gates R D. 1990. Seawater temperature and sublethal coral bleaching in Jamaica. Coral Reefs, 8(4): 193–197. doi: 10.1007/BF00265010
    Glynn P W, Enochs I C. 2011. Invertebrates and their roles in coral reef ecosystems. In: Dubinsky Z, Stambler N, eds. Coral Reefs: An Ecosystem in Transition. Dordrecht: Springer, 273–325
    Godinot C, Houlbrèque F, Grover R, et al. 2011. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE, 6(9): e25024. doi: 10.1371/journal.pone.0025024
    González-Rivero M, Bongaerts P, Beijbom O, et al. 2014. The catlin seaview survey-kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 24(S2): 184–198. doi: 10.1002/aqc.2505
    Heenan A, Williams I D, Acoba T, et al. 2017. Long-term monitoring of coral reef fish assemblages in the western central Pacific. Scientific Data, 4: 170176. doi: 10.1038/sdata.2017.176
    Heymans J. 2003. Comparing the Newfoundland marine ecosystem models using Information Theory. Fisheries Centre Research Reports, 11(5): 62–71
    Heymans J J, Coll M, Libralato S, et al. 2011. Ecopath theory, modeling, and application to coastal ecosystems. Treatise on Estuarine and Coastal Science, 9: 93–113
    Heymans J J, Coll M, Link J S, et al. 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecological Modelling, 331: 173–184. doi: 10.1016/j.ecolmodel.2015.12.007
    Hixon M A, Randall J E. 2019. Coral reef fishes. Encyclopedia of Ocean Sciences, 2: 142–150
    Hodgson G. 1999. A global assessment of human effects on coral reefs. Marine Pollution Bulletin, 38(5): 345–355. doi: 10.1016/S0025-326X(99)00002-8
    Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318(5857): 1737–1742. doi: 10.1126/science.1152509
    Houlbrèque F, Tambutté E, Ferrier-Pagès C. 2003. Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Marine Biology and Ecology, 296(2): 145–166. doi: 10.1016/S0022-0981(03)00259-4
    Huang Zirong, Chen Zuozhi, Zeng Xiaoguang. 2009. Species composition and resources density of Chondrichthyes in the continental shelf of northern South China Sea. Journal of Oceanography in Taiwan Strait, 28(1): 38–44
    Huang Danwei, Licuanan W Y, Hoeksema B W, et al. 2015. Extraordinary diversity of reef corals in the South China Sea. Marine Biodiversity, 45(2): 157–168. doi: 10.1007/s12526-014-0236-1
    Huang Jianhong, Wang Fengxia, Zhao Hongwei, et al. 2020. Reef benthic composition and coral communities at the Wuzhizhou Island in the South China Sea: the impacts of anthropogenic disturbance. Estuarine, Coastal and Shelf Science, 243: 106863,
    Huang Hui, Zhang Chenglong, Yang Jianhui, et al. 2012. Scleractinian coral community characteristics in Zhubi reef sea area of Nansha Islands. Journal of Oceanography in Taiwan Strait, 31(1): 79–84
    Hughes T P, Rodrigues M J, Bellwood D R, et al. 2007. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biology, 17(4): 360–365. doi: 10.1016/j.cub.2006.12.049
    Ippolito S, Naudot V, Noonburg E G. 2016. Alternative stable states, coral reefs, and smooth dynamics with a kick. Bulletin of Mathematical Biology, 78(3): 413–435. doi: 10.1007/s11538-016-0148-2
    Jiao Nianzhi, Chen Dake, Luo Yongming, et al. 2015. Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China. Advances in Climate Change Research, 6(2): 118–125. doi: 10.1016/j.accre.2015.09.010
    Jokiel P L. 2016. Predicting the impact of ocean acidification on coral reefs: evaluating the assumptions involved. ICES Journal of Marine Science, 73(3): 550–557. doi: 10.1093/icesjms/fsv091
    Karim E, Liu Qun, Xue Ying, et al. 2019. Trophic structure and energy flow of the resettled maritime area of the Bay of Bengal, Bangladesh through ECOPATH. Acta Oceanologica Sinica, 38(10): 27–42. doi: 10.1007/s13131-019-1423-5
    Ke Zhixin, Tan Yehui, Huang Liangmin, et al. 2018. Spatial distribution patterns of phytoplankton biomass and primary productivity in six coral atolls in the central South China Sea. Coral Reefs, 37(3): 919–927. doi: 10.1007/s00338-018-1717-7
    Kim T W, Lee K, Duce R, et al. 2014. Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea. Geophysical Research Letters, 41(9): 3156–3162. doi: 10.1002/2014gl059665
    Knowlton N. 2001. Coral reef biodiversity-habitat size matters. Science, 292(5521): 1493–1495. doi: 10.1126/science.1061690
    Landi P, Minoarivelo H O, Brännström Å, et al. 2018. Complexity and stability of ecological networks: a review of the theory. Population Ecology, 60(4): 319–345. doi: 10.1007/s10144-018-0628-3
    Li Yuanjie, Chen Zuozhi, Zhang Jun, et al. 2020. Species and taxonomic diversity of Qilianyu Island reef fish in the Xisha Islands. Journal of Fishery Sciences of China, 27(7): 815–823
    Li Yuanchao, Chen Shiquan, Zheng Xinqing, et al. 2018. Analysis of the change of hermatypic corals in Yongxing Island and Qilianyu Island in nearly a decade. Haiyang Xuebao (in Chinese), 40(8): 97–109
    Li Yuanchao, Liang Jilin, Wu Zhongjie, et al. 2019a. Outbreak and prevention of Acanthaster planci. Ocean Development and Management, 36(8): 9–12
    Li Xiong, Wang Hao, Zhang Zheng, et al. 2014. Mathematical analysis of coral reef models. Journal of Mathematical Analysis and Applications, 416(1): 352–373. doi: 10.1016/j.jmaa.2014.02.053
    Li Yuanchao, Wu Zhongjie, Chen Shiquan, et al. 2017. Discussion of the diversity of the coral reef fish in the shallow reefs along the Yongxing and Qilianyu Island. Marine Environmental Science, 36(4): 509–516
    Li Yuanchao, Wu Zhongjie, Liang Jilin, et al. 2019b. Analysis on the outbreak period and cause of Acanthaster planci in Xisha Islands in recent 15 years. Chinese Science Bulletin, 64(33): 3478–3484. doi: 10.1360/tb-2019-0152
    Libralato S, Christensen V, Pauly D. 2006. A method for identifying keystone species in food web models. Ecological Modelling, 195(3–4): 153–171,
    Lindeman R L. 1942. The trophic-dynamic aspect of ecology. Ecology, 23(4): 399–417. doi: 10.2307/1930126
    Link J S. 2010. Adding rigor to ecological network models by evaluating a set of pre-balance diagnostics: a plea for PREBAL. Ecological Modelling, 221(12): 1580–1591. doi: 10.1016/j.ecolmodel.2010.03.012
    Liu P J, Shao K T, Jan R Q, et al. 2009. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Marine Environmental Research, 68(3): 106–117. doi: 10.1016/j.marenvres.2009.04.009
    Lough J M. 2011. Climate change and coral reefs. In: Hopley D, ed. Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Dordrecht: Springer,
    Luo Zhongyuan, Li Jiangtao, Jia Guodong. 2019. The geochemical significance of deep-water coral and their food source. Advances in Earth Science, 34(12): 1234–1242. doi: 10.11867/j.issn.1001-8166.2019.12.1234
    MacNeil M A, Graham N A J, Cinner J E, et al. 2015. Recovery potential of the world’s coral reef fishes. Nature, 520(7547): 341–344. doi: 10.1038/nature14358
    Mak K K W, Yanase H, Renneberg R. 2005. Cyanide fishing and cyanide detection in coral reef fish using chemical tests and biosensors. Biosensors and Bioelectronics, 20(12): 2581–2593. doi: 10.1016/j.bios.2004.09.015
    Mantyka C S, Bellwood D R. 2007. Direct evaluation of macroalgal removal by herbivorous coral reef fishes. Coral Reefs, 26(2): 435–442. doi: 10.1007/s00338-007-0214-1
    Mason P, Varnell L M. 1996. Detritus: mother nature’s rice cake. Wetlands Program Technical Report no. 96-10. Gloucester Point, Virginia: Virginia Institute of Marine Science, College of William and Mary,
    McCook L J, Almany G R, Berumen M L, et al. 2009. Management under uncertainty: guide-lines for incorporating connectivity into the protection of coral reefs. Coral Reefs, 28(2): 353–366. doi: 10.1007/s00338-008-0463-7
    McCormick M I, Barry R P, Allan B J M. 2017. Algae associated with coral degradation affects risk assessment in coral reef fishes. Scientific Reports, 7(1): 16937. doi: 10.1038/s41598-017-17197-1
    Melbourne-Thomas J, Johnson C R, Fung T, et al. 2011. Regional-scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system. Ecological Applications, 21(4): 1380–1398. doi: 10.1890/09-1564.1
    Mills M M, Lipschultz F, Sebens K P. 2004. Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals. Coral Reefs, 23(3): 311–323. doi: 10.1007/s00338-004-0380-3
    Mouillot D, Graham N A J, Villéger S, et al. 2013. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28(3): 167–177. doi: 10.1016/j.tree.2012.10.004
    Muallil R N, Tambihasan A M, Enojario M J, et al. 2020. Inventory of commercially important coral reef fishes in Tawi-Tawi Islands, Southern Philippines: the Heart of the Coral Triangle. Fisheries Research, 230: 105640. doi: 10.1016/j.fishres.2020.105640
    Mumby P J, Dahlgren C P, Harborne A R, et al. 2006. Fishing, trophic cascades, and the process of grazing on coral reefs. Science, 311(5757): 98–101. doi: 10.1126/science.1121129
    Nixon S W, Oviatt C A, Frithsen J, et al. 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems. Journal of the Limnological Society of Southern Africa, 12(1–2): 43–71,
    Odum E P. 1969. The strategy of ecosystem development. Science, 164(3877): 262–270. doi: 10.1126/science.164.3877.262
    Ortiz M, Berrios F, Campos L, et al. 2015. Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta Bays (SE Pacific): comparative network structure and assessment of human impacts. Ecological Modelling, 309–310: 153–162,
    Palomares M L D, Pauly D. 1998. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Marine and Freshwater Research, 49(5): 447–453. doi: 10.1071/MF98015
    Pauly D, Christensen V, Dalsgaard J, et al. 1998. Fishing down marine food webs. Science, 279(5352): 860–863. doi: 10.1126/science.279.5352.860
    Pauly D, Christensen V, Walters C. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES Journal of Marine Science, 57(3): 697–706. doi: 10.1006/jmsc.2000.0726
    Pauly D, Palomares M L D. 2005. Fishing down marine food web: it is far more pervasive than we thought. Bulletin of Marine Science, 76(2): 197–211
    Pauly D, Soriano-Bartz M L, Palomares M L D. 1993. Improved construction, parametrization and interpretation of steady-state ecosystem models. In: Christensen V, Pauly D, eds. Trophic Models of Aquatic Ecosystems. Manila: ICLARM Conference Proceeding
    Pérez-Ruzafa A, Morkune R, Marcos C, et al. 2020. Can an oligotrophic coastal lagoon support high biological productivity? Sources and pathways of primary production. Marine Environmental Research, 153: 104824. doi: 10.1016/j.marenvres.2019.104824
    Petit T, Bajjouk T, Mouquet P, et al. 2017. Hyperspectral remote sensing of coral reefs by semi-analytical model inversion—Comparison of different inversion setups. Remote Sensing of Environment, 190: 348–365. doi: 10.1016/j.rse.2017.01.004
    Pimm S L, Lawton J H, Cohen J E. 1991. Food web patterns and their consequences. Nature, 350(6320): 669–674. doi: 10.1038/350669a0
    Polovina J J. 1984. Model of a coral reef ecosystem. Coral Reefs, 3(1): 1–11. doi: 10.1007/BF00306135
    Qin Zhenjun, Yu Kefu, Chen Shuchang, et al. 2021. Microbiome of juvenile corals in the outer reef slope and lagoon of the South China Sea: insight into coral acclimatization to extreme thermal environments. Environmental Microbiology, 23(8): 4389–4404. doi: 10.1111/1462-2920.15624
    Reimer J D, Kise H, Wee H B, et al. 2019. Crown-of-thorns starfish outbreak at oceanic Dongsha Atoll in the northern South China Sea. Marine Biodiversity, 49(6): 2495–2497. doi: 10.1007/s12526-019-01021-2
    Ruiz D J, Banks S, Wolff M. 2016. Elucidating fishing effects in a large-predator dominated system: the case of Darwin and Wolf Islands (Galápagos). Journal of Sea Research, 107: 1–11. doi: 10.1016/j.seares.2015.11.001
    Russo G F, Fasulo G, Toscano A, et al. 1990. On the presence of triton species (Charonia spp. ) (Mollusca Gastropoda) in the Mediterranean Sea: ecological considerations. Bollettino Malacologico, 26: 91–104
    Shang Yiwei, Xiao Wupeng, Liu Xin, et al. 2018. Variations of pico-phytoplankton groups and carbon to chlorophyll-a ratios in the South China Sea at the SEATS station. Journal of Xiamen University (Natural Science), 57(6): 811–818
    Shao K T, Ho H C, Lin P L, et al. 2008. A checklist of the fishes of southern Taiwan, northern South China Sea. The Raffles Bulletin of Zoology, 19: 233–271
    Spillman C M, Alves O. 2009. Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef. Coral Reefs, 28(1): 197–206. doi: 10.1007/s00338-008-0438-8
    Steel E A, McElhany P, Yoder N J, et al. 2009. Making the best use of modeled data: multiple approaches to sensitivity analysis of a fish-habitat model. Fisheries, 34(7): 330–339. doi: 10.1577/1548-8446-34.7.330
    Tang Shilin, Chen Chuqun, Zhan Haigang, et al. 2007. Retrieval of euphotic layer depth of South China Sea by remote sensing. Journal of Tropical Oceanography, 26(1): 9–15
    Tebbett S B, Bellwood D R. 2020. Sediments ratchet-down coral reef algal turf productivity. Science of the Total Environment, 713: 136709. doi: 10.1016/j.scitotenv.2020.136709
    Tebbett S B, Goatley C H R, Streit R P, et al. 2020. Algal turf sediments limit the spatial extent of function delivery on coral reefs. Science of the Total Environment, 734: 139422. doi: 10.1016/j.scitotenv.2020.139422
    Ulanowicz R E, Puccia C J. 1990. Mixed trophic impacts in ecosystems. Coenoses, 5(1): 7–16
    Wabnitz C C C, Balazs G, Beavers S, et al. 2010. Ecosystem structure and processes at Kaloko Honokohau, focusing on the role of herbivores, including the green sea turtle Chelonia mydas, in reef resilience. Marine Ecology Progress Series, 420: 27–44. doi: 10.3354/meps08846
    Walters C J, Martell S J D. 2004. Fisheries Ecology and Management. Princeton: Princeton University Press
    Walters C, Martell S J D, Christensen V, et al. 2008. An ecosim model for exploring gulf of Mexico ecosystem management options: implications of including multistanza life-history models for policy predictions. Bulletin of Marine Science, 83(1): 251–271
    Wang Geng, Guan Xiaoxi. 2020. Research status and hot spot analysis of a coral reef ecosystem model. Acta Ecologica Sinica, 40(4): 1496–1503
    Williams G J, Gove J M, Eynaud Y, et al. 2015. Local human impacts decouple natural biophysical relationships on Pacific coral reefs. Ecography, 38(8): 751–761. doi: 10.1111/ecog.01353
    Wilmes J C, Schultz D J, Hoey A S, et al. 2020. Habitat associations of settlement-stage crown-of-thorns starfish on Australia’s Great Barrier Reef. Coral Reefs, 39(4): 1163–1174. doi: 10.1007/s00338-020-01950-6
    Wu Zhongjie, Wang Daoru, Tu Zhigang, et al. 2011. The analysis on the reason of hermatypic coral degradation in Xisha. Acta Oceanologica Sinica, 33(4): 140–146
    Wu Dan, Zhang Fenfen, Zhang Xiaodi, et al. 2021. Stable isotopes (δ13C and δ15 N) in black coral as new proxies for environmental record. Marine Pollution Bulletin, 164: 112007. doi: 10.1016/j.marpolbul.2021.112007
    Xie Fuwu, Liang Jilin, Xing Kongmin, et al. 2019. Characteristics of zooplankton community structure in the eastern and southern offshore coral reef areas of Hainan in summer. Marine Sciences, 43(7): 87–95
    Xu Shendong, Zhang Zhinan, Yu Kefu, et al. 2021. Spatial variations in the trophic status of Favia palauensis corals in the South China Sea: insights into their different adaptabilities under contrasting environmental conditions. Science China Earth Sciences, 64(6): 839–852. doi: 10.1007/s11430-020-9774-0
    Yang Junyi. 2017. Spectral analysis and classification of coral reefs around Qilian Yu in the Xisha Islands (in Chinese)[dissertation]. Guangzhou: Guangzhou University
    Yang Rui. 2019. The study of microbial communities and their potentiality to be environmental indicators of surface layer sediments in Xuande Atoll, the South China Sea (in Chinese)[dissertation]. Beijing: China University of Geosciences (Beijing)
    Yu Kefu. 2012. Coral reefs in the South China Sea: their response to and records on past environmental changes. Science China Earth Sciences, 55(8): 1217–1229. doi: 10.1007/s11430-012-4449-5
    Zhang Jun, Chen Guobao, Chen Zuozhi, et al. 2016. Application of hydroacoustics to investigate the distribution, diel movement, and abundance of fish on Zhubi Reef, Nansha Islands, South China Sea. Chinese Journal of Oceanology and Limnology, 34(5): 964–976. doi: 10.1007/s00343-016-5019-z
    Zhang Jun, Chen Zuozhi, Dong Junde, et al. 2020a. Variation in the population characteristics of blue-striped snapper Lutjanus kasmira in the South China Sea in recent 20 years. Oceanologia et Limnologia Sinica, 51(1): 114–124
    Zhang Ting, Lin Liu, Jian Li, et al. 2020b. Investigation of beach debris at spawning ground of Green Sea Turtles (Chelonia mydas) at Qilianyu Islands, northeastern Xisha Islands. Chinese Journal of Ecology, 39(7): 2408–2415
    Zhang Lüping, Xia Jianjun, Peng Pengfei, et al. 2013. Characterization of embryogenesis and early larval development in the Pacific triton, Charonia tritonis (Gastropoda: Caenogastropoda). Invertebrate Reproduction & Development, 57(3): 237–246. doi: 10.1080/07924259.2012.753472
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  139
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 录用日期:  2022-04-22
  • 网络出版日期:  2022-09-02
  • 刊出日期:  2022-12-30

目录

    /

    返回文章
    返回