Shallow sea topography detection using fully polarimetric Gaofen-3 SAR data based on swell patterns

Longyu Huang Chenqing Fan Junmin Meng Jungang Yang Jie Zhang

Longyu Huang, Chenqing Fan, Junmin Meng, Jungang Yang, Jie Zhang. Shallow sea topography detection using fully polarimetric Gaofen-3 SAR data based on swell patterns[J]. Acta Oceanologica Sinica, 2023, 42(2): 150-162. doi: 10.1007/s13131-022-2063-8
Citation: Longyu Huang, Chenqing Fan, Junmin Meng, Jungang Yang, Jie Zhang. Shallow sea topography detection using fully polarimetric Gaofen-3 SAR data based on swell patterns[J]. Acta Oceanologica Sinica, 2023, 42(2): 150-162. doi: 10.1007/s13131-022-2063-8

doi: 10.1007/s13131-022-2063-8

Shallow sea topography detection using fully polarimetric Gaofen-3 SAR data based on swell patterns

Funds: The National Natural Science Foundation of China under contract Nos 51839002 and U2006207.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Schematic diagram of the study area. The red letters in the map indicate the locations of the four study areas. a–d. HH-polarized images of SAR intensity data that we collected for four study areas (A–D).

    Figure  2.  Flow chart for shallow sea topography experiments.

    Figure  3.  The pre-processed intensity images and polarimetric parameter $\alpha $ (the unit is (°)) of SAR data in study area C.

    Figure  4.  Schematic diagram of the wave estimation of HH polarized image in study area C. Sub-1, Sub-2, Sub-3 and Sub-4 are $ 256 \times 256 $ pixel areas, with the four sub images on the top left and the spectrograms of the four sub images on the right.

    Figure  5.  Schematic diagram of the wave tracking process in the HH-polarized image of the study area C, only 20 wave rays are shown for clarity.

    Figure  6.  Detection topography maps of seven parameters in study area C.

    Figure  7.  Detection topography maps of the four study areas. a. The eastern sea of Hoi An, Vietnam; b. the southern sea of Pingtan County, Fujian Province, China; c. the eastern sea of Xiapu County, Fujian Province, China; d. the western sea of Rakhine State, Myanmar.

    Figure  8.  Plot of the error variation in the different parameters. Polarization does not have an apparent influence on the first shallow sea topography detection method based on SAR imagery, but the approach used in this paper relies on the imaging of surface waves, so the detection capability of different polarization images differs greatly, which is mainly reflected between the co-polarization and cross-polarization. MAE: mean absolute error; MRE: mean relative error.

    Figure  9.  Reference topography map and error histograms corresponding to different depths.

    Table  1.   Gaofen-3 satellite parameters and SAR image information

    Study areaImage IDImaging
    time
    Pixel
    resolution
    Range of incidence
    AI-12018-12-30
    22:42
    8 m31.07°–33.09°
    BI-22020-09-02
    10:01
    8 m23.91°–26.57°
    CI-32020-09-24
    22:06
    8 m25.66°–28.28°
    DI-42020-09-17
    23:37
    8 m43.21°–44.44°
    下载: 导出CSV

    Table  2.   Texture analysis results of different parameters

    ParametersHHVVHVVH$\alpha $
    Contrast13.8713.7613.6713.6715.34
    Coarseness0.008 10.008 10.000 50.000 51.526 0
    下载: 导出CSV

    Table  3.   Wave parameters of the sample areas

    Sub-imageWavelength/mReference depth/mWave period/s
    Sub-1157.0715.4013.55
    Sub-2170.0818.5813.53
    Sub-3168.3419.8013.10
    Sub-4179.6221.0613.55
    下载: 导出CSV
  • Alpers W, Hennings I. 1984. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. Journal of Geophysical Research, 89(C6): 10529–10546. doi: 10.1029/JC089iC06p10529
    Beal R C, Tilley D G, Monaldo F M. 1983. Large-and small-scale spatial evolution of digitally processed ocean wave spectra from SEASAT synthetic aperture radar. Journal of Geophysical Research, 88(C3): 1761–1778. doi: 10.1029/JC088iC03p01761
    Bian Xiaolin, Shao Yun, Tian Wei, et al. 2016. Estimation of shallow water depth using HJ-1C S-band SAR data. The Journal of Navigation, 69(1): 113–126. doi: 10.1017/S0373463315000454
    Bian Xiaolin, Shao Yun, Wang Shiang, et al. 2018. Shallow water depth retrieval from multitemporal sentinel-1 SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(9): 2991–3000. doi: 10.1109/JSTARS.2018.2851845
    Bian Xiaolin, Shao Yun, Zhang Chunyan, et al. 2020. The feasibility of assessing swell-based bathymetry using SAR imagery from orbiting satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 168: 124–130. doi: 10.1016/j.isprsjprs.2020.08.006
    Boccia V, Renga A, Moccia A, et al. 2015a. Tracking of coastal swell fields in SAR images for sea depth retrieval: application to ALOS L-band data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7): 3532–3540. doi: 10.1109/JSTARS.2015.2418273
    Boccia V, Renga A, Rufino G, et al. 2014. L-band SAR image processing for the determination of coastal bathymetry based on swell analysis. In: Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, Canada: IEEE, 5144–5147. doi: 10.1109/IGARSS.2014.6947656
    Boccia V, Renga A, Rufino G, et al. 2015b. Linear dispersion relation and depth sensitivity to swell parameters: application to synthetic aperture radar imaging and bathymetry. The Scientific World Journal, 2015: 374579
    Bruck Sr M, Lehner S. 2013. Coastal wave field extraction using TerraSAR-X data. Journal of Applied Remote Sensing, 7(1): 073694. doi: 10.1117/1.JRS.7.073694
    Brusch S, Held P, Lehner S, et al. 2011. Underwater bottom topography in coastal areas from TerraSAR-X data. International Journal of Remote Sensing, 32(16): 4527–4543. doi: 10.1080/01431161.2010.489063
    Calkoen C J, Hesselmans G H F M, Wensink G J, et al. 2001. The Bathymetry Assessment System: efficient depth mapping in shallow seas using radar images. International Journal of Remote Sensing, 22(15): 2973–2998. doi: 10.1080/01431160116928
    Cloude S R, Pottier E. 1997. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1): 68–78. doi: 10.1109/36.551935
    Collard F, Ardhuin F, Chapron B. 2005. Extraction of coastal ocean wave fields from SAR images. IEEE Journal of Oceanic Engineering, 30(3): 526–533. doi: 10.1109/JOE.2005.857503
    Fan Kaiguo, Huang Weigen, He Mingxia, et al. 2008. Depth inversion in coastal water based on SAR image of waves. Chinese Journal of Oceanology and Limnology, 26(4): 434–439. doi: 10.1007/s00343-008-0434-4
    Hasselmann K, Raney R K, Plant W J, et al. 1985. Theory of synthetic aperture radar ocean imaging: A MARSEN view. Journal of Geophysical Research, 90(C3): 4659–4686. doi: 10.1029/JC090iC03p04659
    Huang Longyu, Yang Jungang, Meng Junmin, et al. 2021. Underwater topography detection and analysis of the Qilianyu Islands in the South China Sea based on GF-3 sar images. Remote Sensing, 13(1): 76. doi: 10.3390/rs13010076
    Jackson C R, Apel J R. 2004. Synthetic aperture radar marine user’s manual. Washington: U. S. Department of Commerce
    Kirby J T, Dalrymple K. 1986. An approximate model for nonlinear dispersion in monochromatic wave propagation models. Coastal Engineering, 9(6): 545–561. doi: 10.1016/0378-3839(86)90003-7
    Li Xiaoming, Lehner S, Rosenthal W. 2010a. Investigation of ocean surface wave refraction using TerraSAR-X Data. IEEE Transactions on Geoscience and Remote Sensing, 48(2): 830–840. doi: 10.1109/TGRS.2009.2033177
    Li Xiaofeng, Li Chunyan, Xu Qing, et al. 2009. Sea surface manifestation of along-tidal-channel underwater ridges imaged by SAR. IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2467–2477. doi: 10.1109/TGRS.2009.2014154
    Li Xiaofeng, Yang Xiaofeng, Zheng Quanan, et al. 2010b. Deep-water bathymetric features imaged by spaceborne SAR in the Gulf Stream region. Geophysical Research Letters, 37(19): L19603. doi: 10.1029/2010GL044406
    Liu Genwang, Zhang Xi, Meng Junmin. 2019. A small ship target detection method based on polarimetric SAR. Remote Sensing, 11(24): 2938. doi: 10.3390/rs11242938
    Mishra M K, Ganguly D, Chauhan P, et al. 2014. Estimation of coastal bathymetry using RISAT-1 C-band microwave SAR data. IEEE Geoscience and Remote Sensing Letters, 11(3): 671–675. doi: 10.1109/LGRS.2013.2274475
    Misra A, Ramakrishnan B, Muslim A M. 2022. Synergistic utilization of optical and microwave satellite data for coastal bathymetry estimation. Geocarto International, 37(8): 2323–2345. doi: 10.1080/10106049.2020.1829100
    Pereira P, Baptista P, Cunha T, et al. 2019. Estimation of the nearshore bathymetry from high temporal resolution Sentinel-1A C-band SAR data—A case study. Remote Sensing of Environment, 223: 166–178. doi: 10.1016/j.rse.2019.01.003
    Pleskachevsky A, Lehner S, Heege T, et al. 2011. Synergy and fusion of optical and synthetic aperture radar satellite data for underwater topography estimation in coastal areas. Ocean Dynamics, 61(12): 2099–2120. doi: 10.1007/s10236-011-0460-1
    Qi Yali. 2009. A relevance feedback retrieval method based on Tamura texture. In: Proceedings of the 2009 Second International Symposium on Knowledge Acquisition and Modeling. Wuhan: IEEE, 174–177
    Romeiser R, Alpers W. 1997. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. Journal of Geophysical Research, 102(C11): 25251–25267. doi: 10.1029/97JC00191
    Santos D, Abreu T, Silva P A, et al. 2020. Estimation of coastal bathymetry using wavelets. Journal of Marine Science and Engineering, 8(10): 772. doi: 10.3390/jmse8100772
    Santos D, Fernández-Fernández S, Abreu T, et al. 2022. Retrieval of nearshore bathymetry from Sentinel-1 SAR data in high energetic wave coasts: the Portuguese case study. Remote Sensing Applications: Society and Environment, 25: 100674. doi: 10.1016/j.rsase.2021.100674
    Schuler D L, Lee J S, Kasilingam D, et al. 2004. Measurement of ocean surface slopes and wave spectra using polarimetric SAR image data. Remote Sensing of Environment, 91(2): 198–211. doi: 10.1016/j.rse.2004.03.008
    Schuler D L, Lee J S, Pottier E, et al. 2005. Comparison of polarimetric SAR techniques for the measurement of directional ocean wave spectra. In: Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium. Seoul: IEEE, 4
    Shen Simin, Zhu Shouxian, Kang Yanyan, et al. 2019. Simulation analysis for remote sensing inversion of wavelength and water depth by the Fast Fourier Transform method. Journal of East China Normal University (Natural Science), 2019(2): 189–194, 208
    Shu Sijing, Meng Junmin, Zhang Xi, et al. 2020. Experimental study of C-band microwave scattering characteristics during the emulsification process of oil spills. Acta Oceanologica Sinica, 39(7): 135–145. doi: 10.1007/s13131-020-1612-4
    Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth and Space Science, 6(10): 1847–1864. doi: 10.1029/2019EA000658
    Weatherall P, Tozer B, Arndt J E, et al. 2021. The GEBCO_2021 Grid - a continuous terrain model of the global oceans and land. Liverpool: NERC EDS British Oceanographic Data Centre NOC
    Zhang Xi, Dierking W, Zhang Jie, et al. 2015. Retrieval of the thickness of undeformed sea ice from C-band compact polarimetric SAR images. The Cryosphere Discussions, 9(5): 5445–5483
    Zhang Hao, Meng Junmin, Sun Lina, et al. 2020. Performance analysis of internal solitary wave detection and identification based on compact polarimetric SAR. IEEE Access, 8: 172839–172847. doi: 10.1109/ACCESS.2020.3025946
    Zhao Wei, Zhou Guoqing, Yue Tao, et al. 2013. Retrieval of ocean wavelength and wave direction from sar image based on radon transform. In: Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne: IEEE, 1513–1516
    Zheng Quanan, Holt B, Li Xiaofeng, et al. 2012. Deep-water seamount wakes on SEASAT SAR image in the Gulf Stream region. Geophysical Research Letters, 39(16): L16604. doi: 10.1029/2012GL052661
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  199
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 录用日期:  2022-05-09
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回