Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau

Ke Wang Shikui Zhai Zenghui Yu Huaijing Zhang

Ke Wang, Shikui Zhai, Zenghui Yu, Huaijing Zhang. Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau[J]. Acta Oceanologica Sinica, 2023, 42(5): 117-129. doi: 10.1007/s13131-022-2069-2
Citation: Ke Wang, Shikui Zhai, Zenghui Yu, Huaijing Zhang. Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau[J]. Acta Oceanologica Sinica, 2023, 42(5): 117-129. doi: 10.1007/s13131-022-2069-2

doi: 10.1007/s13131-022-2069-2

Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau

Funds: The National Science and Technology Major Project under contract No. 2011ZX05025-002-03; the Project of China National Offshore Oil Corporation (CNOOC) Limited under contract No. CCL2013ZJFNO729; the National Natural Science Foundation of China under contract No. 41530963.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Topographic map of the Qiongdongnan Basin (modified from Liu et al. (2015)).

    Figure  2.  Lithological profile of Well LS33 (modified from Liu et al. (2018)).

    Figure  3.  Comparison curves of the 87Sr/86Sr ratios (a), Al2O3 contents (b), Th contents (c) and LREE/HREE ratios (d) of the terrigenous detritus in the LS33 drill core samples. The red dotted line represents the average value of each stage.

    Figure  4.  Comparison curves of the 87Sr/86Sr ratios of ocean water (black), reef carbonate of Well Xike-1 (blue) and authigenic carbonate components of Well LS33 core samples (red dot). 87Sr/86Sr ratios of reef carbonates in Well Xike-1 are from Bi et al. (2019); 87Sr/86Sr ratios of ocean water are from Prokoph et al. (2008).

    Figure  5.  Changes in the Red River Basin in the late Miocene (a) and modern times (b) (modified from van Hoang et al. (2009)). Orange indicates late Paleozoic sedimentary rocks, blue indicates Triassic sedimentary rocks, and purple indicates early Paleozoic sedimentary rocks. YGHB: Yinggehai Basin; QDNB: Qiongdongnan Basin.

    Figure  6.  Schematic diagram of Red River sediment entering the Qiongdongnan Basin in the late Miocene (modified from Wang et al. (2011b)).

    Figure  7.  Covariant diagram of the 87Sr/86Sr and Mn/Sr ratios of authigenic carbonate in LS33 drill core samples (4 189–2 525 m).

    Figure  8.  87Sr/86Sr ratio (dots represent average values and line segments represent the range of variation) of authigenic carbonates (red), reef carbonates in Well Xike-1, seawater of the South China Sea (blue; Bi et al., 2019) and the ocean (black; Prokoph et al., 2008).

    Figure  9.  87Sr/86Sr ratio of authigenic carbonates, heavy mineral composition (Liu et al., 2015), clay content (Li, 2013), and benthic foraminifer assemblage (Liu et al., 2018) in the LS33 drill core.

    Figure  10.  Comparison curves of 87Sr/86Sr ratio growth rate of authigenic carbonate in Well LS33 (a), uplift rate of the Tibetan Plateau (b), sediment accumulation rate in Qiongdongnan Basin (c), and the 87Sr/86Sr ratio of the reef carbonates in Well Xike-1 (d) (the data in b are from Jiang and Li (2014); the data in c are from Huang and Wang (2006); the data in d are from Bi et al. (2019)).

    Table  1.   87Sr/86Sr ratios of the authigenic carbonate and terrigenous detritus, the Al2O3 and Th contents, and LREE/HREE ratios of the terrigenous detritus in the LS33 drill core samples

    Chronostratigraphy Depth/m 87Sr/86Sr ratio
    (Authigenic carbonate)
    Al2O3 content/% Th content/10–6 LREE/HREE
    ratio
    87Sr/86Sr ratio
    (Terrigenous detritus)
    Measured
    value
    Mean
    value
    Measured
    value
    Mean
    value
    Measured
    value
    Mean
    value
    Measured
    value
    Mean
    value
    Measured
    value
    Mean
    value
    Quaternary 2210 0.7094040 0.7092843 15.72 17.43 14.48 14.71 8.83 9.12 0.7162635 0.7167942
    Pliocene 2265 0.7093042 17.40 14.44 9.27 0.7168650
    2395 0.7093653 17.28 15.18 9.20 0.7163923
    2450 0.7094133 17.35 14.73 9.33 0.7173571
    2525 0.7091499 18.04 14.72 9.11 0.7166764
    2635 0.7090691 18.78 14.68 8.97 0.7172111
    Late Miocene 2730 0.7090530 0.7090314 19.27 19.47 14.68 15.80 9.84 9.50 0.7203499 0.7179774
    2775 0.7090548 19.07 15.53 9.58 0.7194971
    2905 0.7090457 19.17 16.27 9.24 0.7161784
    3015 0.7090111 19.52 15.73 9.44 0.7167459
    3120 0.7089924 20.30 16.79 9.39 0.7171156
    Middle Miocene 3160 0.7089885 0.7089444 17.94 16.41 14.37 15.11 8.92 8.43 0.7143662 0.7136054
    3255 0.7089648 18.18 14.23 7.77 0.7137450
    3305 0.7089330 17.44 14.47 7.43 0.7137476
    3340 0.7088912 17.28 16.25 8.03 0.7145771
    Early Miocene 3451 0.7087743 0.7087501 17.14 15.94 7.96 0.7139058
    3523 0.7087647 17.00 17.61 8.78 0.7135312
    3598 0.7087113 17.65 17.67 9.64 0.7144416
    Late Oligocene 3673 0.7085298 0.7085095 16.02 13.00 8.11 0.7128788
    3694 0.7085239 16.06 15.11 8.41 0.7127631
    3766 0.7084581 15.74 15.47 8.05 0.7130270
    3847 0.7085480 12.90 13.29 8.39 0.7130234
    3931 0.7084875 13.53 13.96 9.72 0.7132584
    Early Oligocene 4015 0.7084890 0.7090238
    4102 0.7088337
    4189 0.7089190
    4267 0.7092434
    4339 0.7096338
    Note: − represents no data.
    下载: 导出CSV

    Table  2.   Sr and Mn contents and Mn/Sr ratios of authigenic carbonate in LS33 drill core samples

    Chronostratigraphy Depth/m Sr content/10−6 Mean value Mn content/% Mean value Mn/Sr ratio
    Quaternary 2210 710.66 710.66 0.37 0.37 5.19
    Pliocene 2265 849.50 1 070.63 0.30 0.28 3.53
    2395 909.12 0.33 3.62
    2450 886.74 0.29 3.24
    2 525 1400.33 0.26 1.89
    2 635 1 307.45 0.22 1.69
    Late Miocene 2 730 1321.12 1497.18 0.27 0.24 2.01
    2775 1372.93 0.20 1.48
    2905 1383.49 0.23 1.63
    3015 1678.38 0.22 1.29
    3120 1729.99 0.27 1.56
    Middle Miocene 3160 1342.02 1587.38 0.31 0.32 2.33
    3255 1652.94 0.35 2.10
    3305 1593.73 0.31 1.92
    3340 1760.85 0.30 1.72
    Early Miocene 3 451 1 500.05 1 908.61 0.15 0.20 0.97
    3523 2095.57 0.24 1.16
    3598 2130.22 0.22 1.01
    Late Oligocene 3 673 1 536.91 1 335.33 0.13 0.16 0.86
    3694 1489.59 0.11 0.73
    3766 1486.84 0.15 0.98
    3847 1070.38 0.20 1.90
    3931 1092.91 0.19 1.75
    Early Oligocene 4 015 877.33 1 065.87 0.35 0.40 3.96
    4102 928.04 0.23 2.44
    4189 2914.12 0.52 1.78
    4267 335.57 0.43 12.92
    4339 274.30 0.49 18.03
    下载: 导出CSV
  • Bagherpour B, Bucher H, Schneebeli-Hermann E, et al. 2018. Early Late Permian coupled carbon and strontium isotope chemostratigraphy from South China: Extended Emeishan volcanism?. Gondwana Research, 58: 58–70. doi: 10.1016/j.gr.2018.01.011
    Bi Dongjie, Zhang Daojun, Zhai Shikui, et al. 2017. The coupling relationships among the Qinghai-Tibet Plateau uplifting, the Qiongdongnan Basin subsiding and the Xisha Islands’ Reefs developing. Haiyang Xuebao (in Chinese), 39(1): 52–63
    Bi Dongjie, Zhang Daojun, Zhai Shikui, et al. 2019. Seawater 87Sr/86Sr values recorded by reef carbonates from the Xisha Islands (South China Sea) since the Neogene and its response to the uplift of Qinghai-Tibetan Plateau. Geological Journal, 54(6): 3878–3890. doi: 10.1002/gj.3386
    Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299–6328. doi: 10.1029/92JB02280
    Cai Guofu, Shao Lei, Qiao Peijun, et al. 2013. Marine transgression and evolution of depositional environment in the Paleogene strata of Qiongdongnan Basin, South China Sea. Acta Petrolei Sinica (in Chinese), 34(S2): 91–101
    Cao Licheng, Jiang Tao, Wang Zhenfeng, et al. 2013. Characteristics of heavy minerals and their implications for Neogene provenances evolution in Qiongdongnan Basin. Journal of Central South University (Science and Technology) (in Chinese), 44(5): 1971–1981
    Chen Kui. 2012. Sediment source analysis of oil and gas objective strata in the Qiongdongnan Basin (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Chen Hongyan, Sun Zhipeng, Zhai Shikui, et al. 2015. Analysis of well-seismic stratigraphic correlation and establishment of regional stratigraphic framework in the Qiongdongnan Basin of northern South China Sea. Haiyang Xuebao (in Chinese), 37(5): 1–14
    DePaolo D J. 1986. Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. Geology, 14(2): 103–106. doi: 10.1130/0091-7613(1986)14<103:DROTNS>2.0.CO;2
    Derry L A, Keto L S, Jacobsen S B, et al. 1989. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta, 53(9): 2331–2339. doi: 10.1016/0016-7037(89)90355-4
    Du Tongjun. 2013. Sequence stratigraphic and deep water sedimentary characteristic in the Qiongdongnan Basin (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Edwards C T, Saltzman M R, Leslie S A, et al. 2015. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. Geological Society of America Bulletin, 127(9–10): 1275–1289
    Gong Chenglin, Wang Yingmin, Zhu Weilin, et al. 2011. The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, 28(9): 1690–1702. doi: 10.1016/j.marpetgeo.2011.06.005
    Harris N. 1995. Significance of weathering Himalayan metasedimentary rocks and leucogranites for the Sr isotope evolution of seawater during the early Miocene. Geology, 23(9): 795–798. doi: 10.1130/0091-7613(1995)023<0795:SOWHMR>2.3.CO;2
    Holloway N H. 1982. North Palawan block, Philippines-its relation to Asian mainland and role in evolution of South China Sea. American Association of Petroleum Geologists Bulletin, 66(9): 1355–1383
    Huang Wei, Wang Pinxian. 2006. Sediment mass and distribution in the South China Sea since the Oligocene. Science in China Series D: Earth Sciences, 49(11): 1147–1155. doi: 10.1007/s11430-006-2019-4
    Hutchison C. 1989. Geological Evolution of Southeast Asia. Oxford: Clarendon Press
    Jiang Xiaodian, Li Zhengxiang. 2014. Seismic reflection data support episodic and simultaneous growth of the Tibetan Plateau since 25 Myr. Nature Communications, 5: 5453,
    Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1–4): 27–49
    Kroeger K F, Reuter M, Forst M H, et al. 2007. Eustasy and sea water Sr composition: application to high-resolution Sr-isotope stratigraphy of Miocene shallow-water carbonates. Sedimentology, 54(3): 565–585. doi: 10.1111/j.1365-3091.2006.00849.x
    Le Guerroué E, Allen P A, Cozzi A. 2006. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram formation (Nafun Group, Oman). Precambrian Research, 146(1–2): 68–92
    Lei Chao, Ren Jianye, Pei Jianxiang, et al. 2011. Tectonic framework and multiple episode tectonic evolution in deepwater area of Qiongdongnan Basin, northern continental margin of South China Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 36(1): 151–162
    Lei Chao, Ren Jianye, Zhang Jing. 2015. Tectonic province divisions in the South China Sea: implications for basin geodynamics. Earth Science-Journal of China University of Geosciences (in Chinese), 40(4): 744–762. doi: 10.3799/dqkx.2015.062
    Li Tingdong. 1995. The uplifting process and mechanism of the Qinhai-Tibet Plateau. Acta Geoscientia Sinica (in Chinese), 16(1): 1–9
    Li Na. 2013. The sedimentary paleoenvironment and provenance analysis in deepwater area of Qiongdongnan Basin since Oligocene (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Liu Xiaofeng. 2015. The evolution of sedimentary paleoenvironment and provenance in the deepwater area of the Qiongdongnan Basin (in Chinese) [Dissertation]. Qingdao: Ocean University of China
    Liu Xiaofeng, Sun Zhipeng, Liu Xinyu, et al. 2018. Chronostratigraphic framework based on micro-paleontological data from drilling LS33a in deep water area of northern South China Sea. Acta Sedimentologica Sinica (in Chinese), 36(5): 890–902
    Liu Xinyu, Xie Jinyou, Zhang Huolan, et al. 2009. Chronostratigraphy of planktonic foraminifera in the Yinggehai-Qiongdongnan Basin. Acta Micropalaeontologica Sinica (in Chinese), 26(2): 181–192
    Liu Xiaofeng, Zhang Daojun, Zhai Shikui, et al. 2015. A heavy mineral viewpoint on sediment provenance and environment in the Qiongdongnan Basin. Acta Oceanologica Sinica, 34(4): 41–55. doi: 10.1007/s13131-015-0648-1
    Luo Zhaohua, Mo Xuanxue, Hou Zengqian, et al. 2006. An integrated model for the Cenozoic evolution of the Tibetan Plateau: constraints from igneous rocks. Earth Science Frontiers (in Chinese), 13(4): 196–211
    McArthur J M, Burnett J, Hancock J M. 1992. Strontium isotopes at K/T boundary. Nature, 355(6355): 28. doi: 10.1038/355028a0
    Mi Lijun, Yuan Yusong, Zhang Gongcheng, et al. 2009. Characteristics and genesis of geothermal field in deep-water area of the northern South China Sea. Acta Petrolei Sinica (in Chinese), 30(1): 27–32
    Milliman J D, Syvitski J P M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100(5): 525–544. doi: 10.1086/629606
    Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth & Planetary Science Letters, 92(1): 11–26
    Palmer M R, Elderfield H. 1985. Sr isotope composition of sea water over the past 75 Myr. Nature, 314(6011): 526–528. doi: 10.1038/314526a0
    Prokoph A, Shields G A, Veizer J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 87(3–4): 113–133
    Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Scientific Technical, 48–51
    Ruppel S C, James E W, Barrick J E, et al. 1996. High-resolution 87Sr/86Sr chemostratigraphy of the Silurian: Implications for event correlation and strontium flux. Geology, 24(9): 831–834. doi: 10.1130/0091-7613(1996)024<0831:HRSSCO>2.3.CO;2
    Shao Lei, Cui Yuchi, Qiao Peijun, et al. 2019. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution. Journal of Palaeogeography (in Chinese), 21(2): 216–231
    Su Ming, Xie Xinong, Xie Yuhong, et al. 2014. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea. Journal of Asian Earth Sciences, 79: 552–563. doi: 10.1016/j.jseaes.2012.12.038
    Sun Zhiguo, Han Changfu, Ju Lianjun, et al. 1997. Comparison between the uplift of the Tibetan Plateau and the sedimentation of coral reefs in Xisha Islands. Marine Sciences (in Chinese), 24(4): 64–67
    Sun Zhuan, Liu Hao, Wu Zhe. 2011. The analysis of Cenozoic tectonic sequence of Qiongdongnan Basin in the South China Sea. Offshore Oil (in Chinese), 31(1): 8–15
    Tian Shanshan. 2010. Tectonic subsidence analysis and paleotopography restoration of postrifting strata in the Qiongdongnan Basin (in Chinese) [dissertation]. Wuhan: China University of Geosciences
    van der Beek P, Van Melle J, Guillot S, et al. 2009. Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geoscience, 2(5): 364–368. doi: 10.1038/ngeo503
    van Hoang L, Wu Fuyuan, Clift P D, et al. 2009. Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 10(11): Q11008
    Wang Pinxian. 1995. ODP and Qinghai/Xizang (Tibetan) Palteau. Advance in Earth Sciences (in Chinese), 10(3): 254–257
    Wang Guocan, Cao Kai, Zhang Kexin, et al. 2011a. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic. Science China Earth Sciences, 54(1): 29–44. doi: 10.1007/s11430-010-4110-0
    Wang Xun, Liu Sheng’ao, Wang Zhengrong, et al. 2018. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 498: 68–82
    Wang Yingmin, Xu Qiang, Li Dong, et al. 2011b. Late Miocene Red River submarine fan, northwestern South China Sea. Chinese Science Bulletin, 56(14): 1488–1494. doi: 10.1007/s11434-011-4441-z
    Wei Kuisheng, Cui Hanyun, Ye Shufen, et al. 2001. High-precision sequence stratigraphy in Qiongdongnan Basin. Earth Science-Journal of China University of Geosciences (in Chinese), 26(1): 59–66
    Xie Xinong, Müller R D, Li Sitian, et al. 2006. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745–765. doi: 10.1016/j.marpetgeo.2006.03.004
    Xiu Chun, Zhai Shikui, Huo Suxia, et al. 2018. Provenance of sediments of the Yacheng Formation in the Lingnan Low Uplift, Qiongdongnan Basin: Evidences from U-Pb dating of detrital zircons and geochemistry of the sediments. Bulletin of Mineralogy, Petrology and Geochemistry (in Chinese), 37(6): 1102–1113
    Xu Qiang, Li Dong, Zhu Weilin, et al. 2020. Shrimp U-Pb ages of detrital zircons: Discussions on provenance control and the Red River capture event. Sedimentary Geology and Tethyan Geology (in Chinese), 40(3): 20–30
    Xu Zhiqin, Yang Jingsui, Li Haibing, et al. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica (in Chinese), 85(1): 1–33. doi: 10.1111/j.1755-6724.2011.00375.x
    Yuan Shengqiang, Wu Shiguo, Yao Genshun. 2010. The controlling factors analysis of Qiongdongnan slope deepwater channels and its significance to the hydrocarbon exploration. Marine Geology and Quaternary Geology (in Chinese), 30(2): 61–66. doi: 10.3724/SP.J.1140.2010.02061
    Zakharov Y D, Dril S I, Shigeta Y, et al. 2018. New aragonite 87Sr/86Sr records of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth. Sedimentary Geology, 364: 1–13. doi: 10.1016/j.sedgeo.2017.11.011
    Zhong Dalai, Ding Lin. 1996. A discussion of the process and mechanism of Tibetan Plateau uplifting. Science in China Series D: Earth Sciences (in Chinese), 26(4): 289–295
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  58
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-07-05
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-05-25

目录

    /

    返回文章
    返回