Basis functions for shallow-water temperature profiles based on the internal-wave eigenmodes

Qianqian Li Shoulian Cao Yu Luo Kai Zhang Fanlin Yang

Qianqian Li, Shoulian Cao, Yu Luo, Kai Zhang, Fanlin Yang. Basis functions for shallow-water temperature profiles based on the internal-wave eigenmodes[J]. Acta Oceanologica Sinica, 2023, 42(2): 56-64. doi: 10.1007/s13131-022-2072-7
Citation: Qianqian Li, Shoulian Cao, Yu Luo, Kai Zhang, Fanlin Yang. Basis functions for shallow-water temperature profiles based on the internal-wave eigenmodes[J]. Acta Oceanologica Sinica, 2023, 42(2): 56-64. doi: 10.1007/s13131-022-2072-7

doi: 10.1007/s13131-022-2072-7

Basis functions for shallow-water temperature profiles based on the internal-wave eigenmodes

Funds: The Natural Science Foundation of Shandong Province of China under contract Nos ZR2022MA051 and ZR2020MA090; the Fund of China Postdoctoral Science Foundation under contract No. 2020M670891; the Shandong University of Science and Technology Research Fund under contract No. 2019TDJH103; the Talent Introduction Plan for Youth Innovation Team in Universities of Shandong Province (Innovation Team of Satellite Positioning and Navigation).
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The experimental temperature data. a. The whole temperature profiles from September 13, 11:00 to September 17, 06:00 (GTM), recorded every 30 s. The data on the left of the black dotted line is the training set, and the data on the right of the black dotted line is the test set. b. The temperature training set.

    Figure  2.  The first three modes of the IWM11. a. Mode 1; b. Mode 2; c. Mode 3.

    Figure  3.  The mean reconstruction error by the IWM11 in different frequency, together with an overlay of the mean value over depth.

    Figure  4.  The buoyancy frequency profile (a) and the comparison of the first five modes of the two basis functions (b). The solid blue line represents the IWM11, and the dotted red line represents the EOF11.

    Figure  5.  The absolute correlation coefficients between the first five EOF11 and the IWM11 modes.

    Figure  6.  The reconstruction of a randomly selected temperature profile by five coefficients. The black dotted line represents the measurement temperature profile, the red line represents the reconstruction results by the EOF11, and the blue dotted line represents the reconstruction results by the IWM11.

    Figure  7.  The comparison of the first five modes of the two basis functions. The solid blue line represents the IWM23-11, and the dotted red line represents the EOF23-11.

    Figure  8.  The absolute correlation coefficient between the first five modes of the EOF23-11 and the IWM23-11.

    Figure  9.  The reconstruction of the selected temperature profile using five coefficients. The black dotted line represents the measurement temperature profile, the red line represents the reconstruction results using the EOF23-11, and the blue dotted line represents the reconstruction results using the IWM23-11.

    Figure  10.  The reconstruction mean error of the temperature profiles in the test set with the 16 sets of basis functions.

    Figure  11.  The average reconstruction errors using the 16 different basis functions. The red square represents the average reconstruction errors using the EOFs, and the blue circular represents the average reconstruction errors using the IWMs. The length of the vertical line represents the standard deviation. * represents EOF or IWM.

    Figure  12.  The average reconstruction errors every 30 min using EOF/IWM11 and EOF/IWM23-11. The red line represents the reconstruction results using the EOFs, and the blue line represents the reconstruction results using the IWMs.

  • Apel J R. 1987. Principles of Ocean Physics. San Diego, CA: Academic Press, 61–121
    Jensen F B, Kuperman W A, Porter M B, et al. 2011. Computational Ocean Acoustics. 2nd ed. New York: Springer, 3–10
    Kakatkar R, Gnanaseelan C, Chowdary J S. 2020. Asymmetry in the Tropical Indian Ocean subsurface temperature variability. Dynamics of Atmospheres and Oceans, 90: 101142. doi: 10.1016/j.dynatmoce.2020.101142
    Li Zhenglin, He Li, Zhang Renhe, et al. 2015. Sound speed profile inversion using a horizontal line array in shallow water. Science China Physics, Mechanics & Astronomy, 58(1): 1–7
    Li Qianqian, Shi Juan, Li Zhenglin, et al. 2019a. Acoustic sound speed profile inversion based on orthogonal matching pursuit. Acta Oceanologica Sinica, 38(11): 149–157. doi: 10.1007/s13131-019-1505-4
    Li Fenghua, Wang Kai, Yang Xishan, et al. 2021. Passive ocean acoustic thermometry with machine learning. Applied Acoustics, 181: 108167. doi: 10.1016/j.apacoust.2021.108167
    Li Fenghua, Yang Xishan, Zhang Yanjun, et al. 2019b. Passive ocean acoustic tomography in shallow water. The Journal of the Acoustical Society of America, 145(5): 2823–2830. doi: 10.1121/1.5099350
    Monahan A H, Fyfe J C, Ambaum M H P, et al. 2009. Empirical orthogonal functions: the medium is the message. Journal of Climate, 22(24): 6501–6514. doi: 10.1175/2009JCLI3062.1
    Song Wenhua, Hu Tao, Guo Shengming, et al. 2014. A methodology to achieve the basis function for the expansion of sound speed profile. Chinese Journal of Acoustics, 33(3): 299–311
    Tan B A, Gerstoft P, Yardim C, et al. 2013. Broadband synthetic aperture geoacoustic inversion. The Journal of the Acoustical Society of America, 134(1): 312–322. doi: 10.1121/1.4807567
    Tielbürger D, Finette S, Wolf S. 1997. Acoustic propagation through an internal wave field in a shallow water waveguide. The Journal of the Acoustical Society of America, 101(2): 789–808. doi: 10.1121/1.418039
  • 加载中
图(12)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  86
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 录用日期:  2022-05-01
  • 网络出版日期:  2022-10-28
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回