Aliphatic biomarker signatures of early Oligocene−early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter

Min Xu Dujie Hou Xiong Cheng Jun Gan Xinde Xu Gang Liang Wenjing Ding

Min Xu, Dujie Hou, Xiong Cheng, Jun Gan, Xinde Xu, Gang Liang, Wenjing Ding. Aliphatic biomarker signatures of early Oligocene−early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter[J]. Acta Oceanologica Sinica, 2023, 42(3): 1-18. doi: 10.1007/s13131-022-2082-5
Citation: Min Xu, Dujie Hou, Xiong Cheng, Jun Gan, Xinde Xu, Gang Liang, Wenjing Ding. Aliphatic biomarker signatures of early Oligocene−early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter[J]. Acta Oceanologica Sinica, 2023, 42(3): 1-18. doi: 10.1007/s13131-022-2082-5

doi: 10.1007/s13131-022-2082-5

Aliphatic biomarker signatures of early Oligocene−early Miocene source rocks in the central Qiongdongnan Basin: Source analyses of organic matter

Funds: The National Natural Science Foundation of China under contract No. 41872131.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map showing the regional geological outline of the Qiongdongnan Basin (QDNB). a. Geographic location of the QDNB in the South China Sea. b. Schematic structure of the QDNB and location of associated wells, well names in black include cutting samples, names in red contain core/sidecore samples, and letters in blue indicate drill stem test oils involved. c. The stratigraphic column of QDNB. Dep. env. : depositional environment.

    Figure  2.  Normalized n-alkane profiles of four distribution patterns for the early Oligocene to early Miocene source rocks from the Qiongdongnan Basin and partial m/z 85 mass chromatograms of the aliphatic hydrocarbon fractions showing the distributions of n-alkanes and isoprenoids in the representative samples for each pattern. Numbers in each figure represent carbon numbers of n-alkanes; Pr: Pristane; Ph: Phytane.

    Figure  3.  Cross-plot of Ph/nC18 versus Pr/nC17 for the SRs and oils in the Qiongdongnan Basin. “O” in the legend presents oil samples.

    Figure  4.  Partial m/z 191 (left) and 412 (right) mass chromatograms of the aliphatic fractions illustrating four different distribution patterns of terpanes and bicadinanes in the rock extracts from the Qiongdongnan Basin. In m/z 191, TT: tricyclic teranes; TeT: tetracyclic teranes; peak distributions assign hopane stereochemistry at C-22 (S and R); Ts: 18α(H),22,29,30-trisnorneohopane; Tm: 17α(H),22,29,30-trisnorhopane; C29Ts: 18α(H)-30-norneohopane; Cx, x: carbon number; H: 17α(H)-hopane; M: 17β(H) moretane. In m/z 412, W: cis-cis-trans-bicadinane; T: trans-trans-trans-bicadinane; R: bicadinane.

    Figure  5.  Partial m/z 217 mass chromatograms showing the sterane and diasterane distributions in the rock extracts from the Qiongdongnan Basin. C20: norpregnane; C21: pregnane; C22: homopregnane; D-C27 S: 13β(H), 17α(H)-C27 diasterane 20S; D-C27 R: 13β(H), 17α(H)-C27 diasterane 20R; C27: C27 ααα 20R sterane; C28: C28 ααα 20R sterane; C29: C29 ααα 20R sterane.

    Figure  6.  m/z 85, 191, 217 and 412 mass chromatograms of the aliphatic hydrocarbons in drill stem test oil (2 618.1–2 680.5 m) from the lower Lingshui Formation in Well BD-3, Qiongdongnan Basin. The abbreviations refer to Figs 4 and 5.

    Figure  7.  Cross-plots of Ro versus depth (a), odd-to-even predominanc (OEP) versus CPI22-32 (b), C29 ααα 20S/(20S+20R) sterane versus C29 20R ββ/(αα+ββ) sterane (c) for samples of rock extracts and drill stem test oils. “O” in the legend presents oil samples.

    Figure  8.  Cross-plot of the C27/C29 ααα 20R steranes versus the Pr/Ph ratio for all analyzed samples from the lower Oligocene to lower Miocene in the Qiongdongnan Basin. “O” in the legend presents oil samples. OM: organic matter.

    Figure  9.  Cross-plot of the O/C30 H versus (W+T)/C30 H for rock extracts and drill stem test oils. “O” in the legend presents oil samples.

    Figure  10.  Ternary diagram of the C27-C28-C29 ααα 20R steranes for the rock extracts and drill stem test oils in the Qiongdongnan Basin. “O” in the legend presents oil samples.

    Figure  11.  Cross-plot of terrestrial-derived indicators versus depths from middle lingshui Formation to lower Sanya Formation in Well BD-1. For abbreviations, see Table 1.

    Figure  12.  Vertical variations of total organic carbon (TOC) and hydrocarbon-generation potential (S1+S2) of source rocks in three representative wells in the Qiongdongnan Basin.

    Table  1.   Abbreviations and definitions for some geochemical parameters mentioned in the text

    AbbreviationDefinition
    CPI22-32carbon preference index=2(C23+C25+C27+C29+C31)/(C22+2C24+2C26+2C28+2C30+C32) alkanes
    OEPodd-to-even predominance=[(Cmax−2+6×Cmax+Cmax+2)/$(4{\rm{C}}_{\max-1}+4{\rm{C}}_{\max+1})]^{(-1)^{\max-1}} $ alkanes
    Wax index(C21+C22)/(C28+C29) alkanes
    TARterrigenous/aquatic ratio=(C27+C29+C31)/(C15+C17+C19) alkanes
    ACL15-33average chain length=∑(n×Cn)/ ∑Cn, n is among 15−33
    Prpristane
    Phphytane
    C19/(C19+C23) TTC19/(C19+C23) tricyclic terpanes
    C23/C21 TTC23/C21 tricyclic terpanes
    C24 TeT/C23TTC24 tetracyclic terpane/C23 tricyclic terpane
    Ts/(Ts+Tm)C27 18$\alpha $(H)-22,29,30-trisnorneohopane/(C27 17$\alpha $(H)-22,29,30-trisnorhopane + C27 18$\alpha $(H)-22,29,30-trisnorneohopane)
    C29 Ts/C29 H18$\alpha $-30-neohopane/C29 $\alpha\beta $ norhopane
    C29 H/(H+M)C29 $\alpha \beta /(\alpha\beta+\beta \alpha )$ norhopanes
    C30 H/(H+M)C30 $\alpha \beta/(\alpha \beta+\beta\alpha $) hopanes
    C31/C30 HC31 $\alpha \beta$ homohopane/ C30 $\alpha \beta$ hopanes
    C31 22S/(22S+22R) HC31 $\alpha \beta$ 22S/(22S+22R) homohopanes
    O/C30 Holeanane/C30 $\alpha \beta$ hopane
    GA/C30 Hgammacerane/C30 $\alpha \beta$ hopane
    DAO/C30 Hdes-A-oleanane/C30 $\alpha \beta$ hopane
    Ta/C30 Htaraxerane/C30 $\alpha \beta$ hopane
    (O+DAO+Ta)/C30 H(oleanane+des-A-oleanane+taraxerane)/C30 $\alpha \beta$ hopane
    (W+T)/C30 H(cis-cis-cis-bicadinane+trans-trans-trans-bicadinane)/C30 $\alpha \beta$ hopane
    T/∑C29 steranestrans-trans-trans-bicadinane/C29 ($\alpha\alpha\alpha $ 20S+$\alpha \beta\beta$ 20R+$\alpha\beta\beta $ 20S+$\alpha\alpha\alpha $ 20R) steranes
    C27/C29 $\alpha\alpha\alpha $ 20R steranesC27 $\alpha\alpha\alpha $ 20R sterane/C29 $\alpha\alpha\alpha $ 20R sterane
    C29 20S/(20R+20S) steranesC29 $\alpha\alpha\alpha $ 20S/(20R+20S) steranes
    C29 $\beta\beta $/($\alpha\alpha $+$\beta\beta $) steranesC29 $\alpha \beta\beta$/($\alpha\alpha\alpha $+$\alpha \beta\beta$) 20R steranes
    下载: 导出CSV

    Table  2.   Detailed information and bulk geochemical parameters of representative rock samples from nine wells in the Qiongdongnan Basin

    Sample IDWellFormationDepth/mTypeLithologyTOC/%(S1+S2)/(mg·g −1)Ro/%Tmax/°C
    R1BD-1N1s12 537cuttingshale0.440.650.61434
    R2BD-1N1s22 669cuttingshale0.721.030.63437
    R3BD-1E3l13 249cuttingsilty muds.0.822.280.71443
    R4BD-1E3l24 183–4 221cuttingshale0.931.580.84447
    R5BD-1E3l34 599–4 601cuttingsilty muds.0.581.020.84451
    R6BD-2E3l12 888.2–2 896.2cuttingshale0.500.520.71435
    R7BD-2E3l33 326.2–3 330.2cuttingshale0.520.50.76437
    R8BD-2E3y13 998.2–4 004.2cuttingshale0.980.671.03451
    R9BD-3E3l32 615.7sidecoreshale0.2010.51n.d.440
    R10BD-3E3y13 076.7sidecoreshale0.3170.61n.d.445
    R11BD-3E3y33 498.7sidecoreshale0.5290.51n.d.446
    R12LS-1E3l2 357.2sidecoreshale0.92.740.42431
    R13ST-1N1s2 719.2sidecoresiltstonen.d.0.87n.d.n.d.
    R14YL-1N1s21 255sidecoreshalen.d.1.43n.d.423
    R15YL-1E3l22 051–2 053cuttingshalen.d.n.d.n.d.n.d.
    R16YL-1E3l32 133.5sidecoresiltstonen.d.0.69n.d.n.d.
    R17YL-2N1s1 105.5sidecoreshalen.d.2.54n.d.n.d.
    R18YL-2E3y1 125.5sidecoresiltstonen.d.1.28n.d.n.d.
    R19YL-3N1s992–996cuttingshalen.d.n.d.n.d.n.d.
    R20YL-3E3y1 024.5sidecoreshalen.d.12.78n.d.406
    R21YL-4E3y1680.8sidecoresiltstonen.d.0.91n.d.n.d.
    O1BD-3E3l32 618.1–2 680.5oilDSTn.d.n.d.n.d.n.d.
    O2BD-3E3l32 618.1–2 680.5oilDSTn.d.n.d.n.d.n.d.
    O3BD-3E3l32 618.1–2 680.5oilDSTn.d.n.d.n.d.n.d.
    Note: Rx and Ox point to rock samples and drill stem test oils, respectively. “x” is the number of each representative sample; “Depth” points to buried depth of each sample with deduction of water-depth; TOC: total organic carbon; S1+S2: free hydrocarbons+potential hydrocarbons; Ro: vitrinite reflectance; Tmax: temperature of maximum hydrocarbon generation rate; muds.: mudstone; n.d.: no data.
    下载: 导出CSV

    Table  3.   Biomarker parameters of the early Oligocene-early Miocene source rocks for representative rock samples from the Qiongdongnan Basin

    Sample ID and parametersR1R2R3R4R5R6R7R8R9R10R11R12R13R14R15R16R17R18R19R20R21O1O2O3
    Cmax21&29292720&261917&271417&2022212024292125182020272018&24201920
    OEP1.381.321.031.120.991.000.801.121.001.021.100.981.221.211.260.760.961.031.181.050.901.081.011.08
    CPI22–321.301.261.081.061.031.081.071.031.041.041.041.041.191.231.160.990.941.001.261.081.011.001.001.02
    Pr/Ph2.233.723.121.211.381.701.031.581.072.371.211.050.960.450.640.450.450.390.270.230.541.851.391.68
    Pr/nC172.894.823.301.071.411.280.670.380.780.790.221.331.910.681.730.500.690.680.640.430.690.870.630.96
    Ph/nC180.951.020.710.570.820.790.680.280.710.300.151.270.870.972.170.600.930.790.800.571.070.330.340.35
    Wax index0.800.430.621.202.130.811.492.841.491.551.761.291.022.861.545.433.054.720.975.871.443.193.942.28
    ACL15-3325.1826.5325.6123.7022.0522.7721.7521.4423.1623.0222.9222.9825.2122.8223.3620.6922.3321.7825.4722.0923.2222.2722.2722.27
    TAR2.576.344.461.380.540.830.460.370.850.860.820.853.340.911.160.160.570.366.330.380.920.510.350.78
    ACL15-330.340.570.570.140.190.110.070.090.120.300.040.100.210.050.190.110.060.050.040.050.060.340.290.32
    Pr0.951.051.441.801.701.652.401.441.291.332.611.971.131.571.821.461.621.692.222.111.810.731.030.82
    Ph1.032.401.590.550.350.290.420.270.410.400.330.751.120.350.630.320.340.290.630.420.390.280.180.28
    C19/(C19+C23) TT0.450.350.460.350.380.380.520.490.630.430.550.480.540.350.300.420.450.420.190.200.550.680.690.68
    C23/C21 TT0.310.350.410.260.250.310.460.420.810.260.260.320.550.230.300.330.210.230.110.110.310.360.370.29
    C24 TeT/C23TT0.800.820.900.860.830.880.910.880.920.880.850.900.800.690.660.770.780.740.680.560.830.910.900.93
    Ts/(Ts+Tm)0.810.810.860.840.840.840.880.890.860.860.850.860.860.680.800.820.770.750.570.510.860.830.840.85
    C29Ts/C29 H0.590.580.590.560.570.570.560.420.450.440.520.580.590.340.430.470.480.540.310.440.550.430.450.46
    C29 H/(H+M)0.810.450.450.080.090.160.100.090.601.400.080.591.070.080.210.190.070.090.030.040.081.361.201.16
    C30 H/(H+M)0.060.050.060.230.230.150.210.200.290.150.220.040.070.230.100.180.170.170.130.110.170.210.210.16
    C31/C30 H0.520.600.530.340.370.510.400.590.780.250.470.490.490.570.380.580.550.490.510.600.470.470.480.47
    C31 H 20S/(20S+20R)0.100.070.170.010.010.090.020.030.040.130.020.060.140.030.050.040.030.040.010.010.020.660.580.54
    O/C30 H0.150.120.130.030.040.080.030.020.120.090.020.060.100.060.050.070.020.020.020.010.030.160.150.15
    GA/C30 H1.060.630.760.120.130.320.150.140.761.620.120.701.320.220.310.370.130.150.060.070.132.171.931.85
    DAO/C30 H0.0220.0080.1370.0060.0080.1810.0170.0200.0140.1670.0040.0070.117n.d.n.d.n.d.n.d.n.d.0.004n.d.n.d.0.3820.3370.336
    Ta/C30 H0.0420.0270.3000.0060.0080.5050.0610.0620.0370.9650.0080.0180.016n.d.n.d.n.d.n.d.n.d.0.055n.d.n.d.0.9910.9170.946
    (O+DAO+Ta)/C30 H0.670.310.690.810.850.880.651.021.171.231.181.621.360.971.320.681.391.230.560.491.411.161.491.85
    (W+T)/C30 H0.400.470.420.380.380.530.440.450.470.470.390.430.440.050.120.180.400.350.240.240.430.450.470.51
    T/∑C29 steranes0.340.350.480.390.400.470.430.510.580.530.400.350.530.280.310.320.490.480.140.460.530.540.570.57
    Notes: Rx and Ox are sample IDs consistent with that in Table 2. For definition of each parameter see Table 1. Cmax: maximum n-alkanes; n.d.: no data.
    下载: 导出CSV
  • Ahmed M, Volk H, Allan T, et al. 2012. Origin of oils in the eastern Papuan Basin, Papua New Guinea. Organic Geochemistry, 53: 137–152. doi: 10.1016/j.orggeochem.2012.06.002
    Albrecht P, Vandenbroucke M, Mandengué M. 1976. Geochemical studies on the organic matter from the Douala Basin (Cameroon)—I. Evolution of the extractable organic matter and the formation of petroleum. Geochimica et Cosmochimica Acta, 40(7): 791–799. doi: 10.1016/0016-7037(76)90031-4
    Alexander R, Larcher A V, Kagi R I, et al. 1988. The use of plant derived biomarkers for correlation of oils with source rocks in the Cooper/Eromanga Basin system, Australia. The APPEA Journal, 28(1): 310–324. doi: 10.1071/AJ87024
    Alkhafaji M W. 2021. Biomarker assessment of oil biodegradation, water washing, and source rock characteristics of oil seeps from the Foothill Zone along the Tigris River, Northern Iraq. Journal of Petroleum Science and Engineering, 197: 107946. doi: 10.1016/j.petrol.2020.107946
    Andrusevich V E, Engel M H, Zumberge J E, et al. 1998. Secular, episodic changes in stable carbon isotope composition of crude oils. Chemical Geology, 152(1–2): 59–72
    Blocho R M, Smith R W, Noll M R. 2021. Analyses of depositional environments of the Marcellus formation in New York using biomarker and trace metal proxies. Journal of Petroleum Exploration and Production Technology, 11(8): 3163–3175. doi: 10.1007/s13202-021-01237-8
    Bourbonniere R A, Meyers P A. 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41(2): 352–359. doi: 10.4319/lo.1996.41.2.0352
    Cao Ying, Li Chunfeng, Yao Yongjian. 2017. Thermal subsidence and sedimentary processes in the South China Sea Basin. Marine Geology, 394: 30–38. doi: 10.1016/j.margeo.2017.07.022
    Chattopadhyay A, Dutta S. 2014. Higher plant biomarker signatures of early Eocene sediments of North Eastern India. Marine and Petroleum Geology, 57: 51–67. doi: 10.1016/j.marpetgeo.2014.04.004
    Didyk B M, Simoneit B R T, Brassell S C, et al. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272(5650): 216–222. doi: 10.1038/272216a0
    Ding Wenjing, Hou Dujie, Gan Jun, et al. 2021. Palaeovegetation variation in response to the late Oligocene–early Miocene East Asian summer monsoon in the Ying-Qiong Basin, South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110205
    Ding Wenjing, Hou Dujie, Gan Jun, et al. 2022. Sedimentary geochemical records of late Miocene-early Pliocene palaeovegetation and palaeoclimate evolution in the Ying-Qiong Basin, South China Sea. Marine Geology, 445: 106750. doi: 10.1016/j.margeo.2022.106750
    Ding Wenjing, Hou Dujie, Zhang Weiwei, et al. 2018. A new genetic type of natural gases and origin analysis in northern Songnan-Baodao Sag, Qiongdongnan Basin, South China Sea. Journal of Natural Gas Science and Engineering, 50: 384–398. doi: 10.1016/j.jngse.2017.12.003
    Eglinton G, Hamilton R J. 1967. Leaf Epicuticular Waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents. Science, 156(3780): 1322–1335. doi: 10.1126/science.156.3780.1322
    Fan Caiwei, Xu Changgui, Xu Jie. 2021. Genesis and characteristics of miocene deep-water clastic rocks in Yinggehai and Qiongdongnan Basins, northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 153–166. doi: 10.1111/1755-6724.14637
    Fazeelat T, Asif M, Jalees M I, et al. 2011. Source correlation between biodegraded oil seeps and a commercial crude oil from the Punjab Basin, Pakistan. Journal of Petroleum Science and Engineering, 77(1): 1–9. doi: 10.1016/j.petrol.2011.01.003
    Fyhn M B W, Thomsen T B, Keulen N, et al. 2019. Detrital zircon ages and heavy mineral composition along the Gulf of Tonkin—Implication for sand provenance in the Yinggehai-Song Hong and Qiongdongnan basins. Marine and Petroleum Geology, 101: 162–179. doi: 10.1016/j.marpetgeo.2018.11.051
    Galarraga F, Urbani F, Escobar M, et al. 2010. Main factors controlling the compositional variability of seepage oils from Trujillo state, western Venezuela. Journal of Petroleum Geology, 33(3): 255–267. doi: 10.1111/j.1747-5457.2010.00477.x
    Gao Gang, Zhang Gongcheng, Chen Guo, et al. 2018. Geochemistry of borehole cutting shale and natural gas accumulation in the deepwater area of the Zhujiang River Mouth-Qiongdongnan Basin in the northern South China Sea. Acta Oceanologica Sinica, 37(2): 44–53. doi: 10.1007/s13131-018-1151-2
    Grantham P J, Posthuma J, Baak A. 1983. Triterpanes in a number of Far-Eastern crude oils. In: Bjory M, Albrecht C, eds. Advances in Organic Geochemistry 1981: International Conference Proceedings. Chichester: Blackwell, 710–724
    Guo Shusheng, Liao Gaolong, Liang Hao, et al. 2021. Major breakthrough and significance of deep-water gas exploration in Well BD21 in Qiongdongnan Basin. China Petroleum Exploration, 26(5): 49–59
    Haberer R M, Mangelsdorf K, Wilkes H, et al. 2006. Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada). Organic Geochemistry, 37(5): 519–538. doi: 10.1016/j.orggeochem.2006.01.004
    Hakimi M H, Abdullah E S, Ebiad M A, et al. 2021. Early mature sulfur-rich oils from the central gulf of Suez province: bulk property and geochemical investigations of maltene and asphaltene show source related-type. Arabian Journal of Geosciences, 14(12): 1119. doi: 10.1007/s12517-021-07280-3
    Hakimi M H, Mohialdeen I M J, Al Ahmed A A, et al. 2018. Thermal modeling and hydrocarbon generation of the late Jurassic–early Cretaceous Chia Gara Formation in Iraqi Kurdistan region, northern Zagros Fold Belt. Egyptian Journal of Petroleum, 27(4): 701–713. doi: 10.1016/j.ejpe.2017.10.007
    Hautevelle Y, Michels R, Malartre F, et al. 2006. Vascular plant biomarkers as proxies for palaeoflora and palaeoclimatic changes at the Dogger/Malm transition of the Paris Basin (France). Organic Geochemistry, 37(5): 610–625. doi: 10.1016/j.orggeochem.2005.12.010
    Hoş-Çebi F. 2017. Organic geochemical characteristics and paleoclimate conditions of the Miocene coals at the Çan-Durali (Çanakkale). Journal of African Earth Sciences, 129: 117–135. doi: 10.1016/j.jafrearsci.2016.12.003
    Huang Heting, Huang Baojia, Huang Yiwen, et al. 2017. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea: A case study of Lingshui 17–2 gas field in Qiongdongnan Basin. Petroleum Exploration and Development, 44(3): 409–417. doi: 10.1016/S1876-3804(17)30047-2
    Huang Baojia, Li Li, Huang Heting. 2012. Origin and accumulation mechanism of shallow gases in the North Baodao Slope, Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 39(5): 567–573. doi: 10.1016/S1876-3804(12)60077-9
    Huang Wen-Yen, Meinschein W G. 1979. Sterols as ecological indicators. Geochimica et Cosmochimica Acta, 43(5): 739–745. doi: 10.1016/0016-7037(79)90257-6
    Huang Baojia, Tian Hui, Li Xushen, et al. 2016. Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 72: 254–267. doi: 10.1016/j.marpetgeo.2016.02.007
    Huang Baojia, Xiao Xianming, Li Xuxuan. 2003. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea. Organic Geochemistry, 34(7): 1009–1025. doi: 10.1016/S0146-6380(03)00036-6
    Izart A, Suarez-Ruiz I, Bailey J. 2015. Paleoclimate reconstruction from petrography and biomarker geochemistry from Permian humic coals in Sydney Coal Basin (Australia). International Journal of Coal Geology, 138: 145–157. doi: 10.1016/j.coal.2014.12.009
    Jeng W L. 2006. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry, 102(3–4): 242–251
    Jiang Lian, Ding Wenjing, George S C. 2020. Late Cretaceous–Paleogene palaeoclimate reconstruction of the Gippsland Basin, SE Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 556: 109885
    Jiang Lian, George S C. 2018. Biomarker signatures of Upper Cretaceous Latrobe Group hydrocarbon source rocks, Gippsland Basin, Australia: Distribution and palaeoenvironment significance of aliphatic hydrocarbons. International Journal of Coal Geology, 196: 29–42. doi: 10.1016/j.coal.2018.06.025
    Jiang Lian, George S C. 2019. Biomarker signatures of Upper Cretaceous Latrobe Group petroleum source rocks, Gippsland Basin, Australia: Distribution and geological significance of aromatic hydrocarbons. Organic Geochemistry, 138: 103905. doi: 10.1016/j.orggeochem.2019.103905
    Kennicutt M C, Barker C, Brooks J M, et al. 1987. Selected organic-matter source indicators in the orinoco, Nile and Changjiang deltas. Organic Geochemistry, 11(1): 41–51. doi: 10.1016/0146-6380(87)90050-7
    La Croix A D, He Jianhua, Bianchi V, et al. 2020. Early Jurassic palaeoenvironments in the Surat Basin, Australia—marine incursion into eastern Gondwana. Sedimentology, 67(1): 457–485. doi: 10.1111/sed.12649
    Lai Hongfei, Fang Yunxin, Kuang Zenggui, et al. 2021. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: implications from site GMGS5-W08. Marine and Petroleum Geology, 123: 104774. doi: 10.1016/j.marpetgeo.2020.104774
    Large D J, Gize A P. 1996. Pristane/phytane ratios in the mineralized Kupferschiefer of the Fore-Sudetic Monocline, southwest Poland. Ore Geology Reviews, 11(1–3): 89–103
    Lei Chao, Clift P D, Ren Jianye, et al. 2019. A rapid shift in the sediment routing system of lower-upper Oligocene strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea. Marine and Petroleum Geology, 104: 249–258. doi: 10.1016/j.marpetgeo.2019.03.012
    Li Chao, Lyu Chengfu, Chen Guojun, et al. 2019. Zircon U-Pb ages and REE composition constraints on the provenance of the continental slope-parallel submarine fan, western Qiongdongnan Basin, northern margin of the South China Sea. Marine and Petroleum Geology, 102: 350–362. doi: 10.1016/j.marpetgeo.2018.12.046
    Li Wenhao, Zhang Zhihuan. 2017. Paleoenvironment and its control of the formation of oligocene marine source rocks in the deep-water area of the northern South China Sea. Energy & Fuels, 31(10): 10598–10611
    Li Hangyu, Zhang Ming, Lau H C, et al. 2020. China’s deepwater development: subsurface challenges and opportunities. Journal of Petroleum Science and Engineering, 195: 107761. doi: 10.1016/j.petrol.2020.107761
    Li Wenhao, Zhang Zhihuan, Li Youchuan, et al. 2012. New perspective of Miocene marine hydrocarbon source rocks in deep-water area in Qiongdongnan Basin of northern South China Sea. Acta Oceanologica Sinica, 31(5): 107–114. doi: 10.1007/s13131-012-0241-9
    Li Wenhao, Zhang Zhihuan, Li Youchuan, et al. 2013. The main controlling factors and developmental models of Oligocene source rocks in the Qiongdongnan Basin, northern South China Sea. Petroleum Science, 10(2): 161–170. doi: 10.1007/s12182-013-0263-8
    Liu Zhen, Sun Zhipeng, Wang Zisong, et al. 2016a. Evaluation of abundant hydrocarbon-generation depressions in the deepwater area of Qiongdongnan Basin, South China Sea. Acta Oceanologica Sinica, 35(2): 137–144. doi: 10.1007/s13131-015-0784-7
    Liu Zhifei, Zhao Yulong, Colin C, et al. 2016b. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153: 238–273. doi: 10.1016/j.earscirev.2015.08.005
    Mathur N. 2014. Tertiary oils from Upper Assam Basin, India: a geochemical study using terrigenous biomarkers. Organic Geochemistry, 76: 9–25. doi: 10.1016/j.orggeochem.2014.07.007
    Miao Yufa, Warny S, Clift P D, et al. 2018. Climatic or tectonic control on organic matter deposition in the South China Sea? A lesson learned from a comprehensive Neogene palynological study of IODP Site U1433. International Journal of Coal Geology, 190: 166–177. doi: 10.1016/j.coal.2017.10.003
    Mohamed N S, El Nady M M, Sharaf L M. 2018. Evaluation of possible source rocks and extracts characteristics from Safir-1x well, North Western Desert, Egypt. Petroleum Science and Technology, 36(16): 1235–1241. doi: 10.1080/10916466.2018.1465974
    Moldowan J M, Dahl J, Huizinga B J, et al. 1994. The molecular fossil record of oleanane and its relation to angiosperms. Science, 265(5173): 768–771. doi: 10.1126/science.265.5173.768
    Murray A P, Sosrowidjojo I B, Alexander R, et al. 1997. Oleananes in oils and sediments: Evidence of marine influence during early diagenesis?. Geochimica et Cosmochimica Acta, 61(6): 1261–1276
    Nytoft H P, Kildahl-Andersen G, Samuel O J. 2010. Rearranged oleananes: Structural identification and distribution in a worldwide set of late Cretaceous/Tertiary oils. Organic Geochemistry, 41(10): 1104–1118. doi: 10.1016/j.orggeochem.2010.06.008
    Otto A, Simoneit B R T, Rember W C. 2005. Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA. Organic Geochemistry, 36(6): 907–922. doi: 10.1016/j.orggeochem.2004.12.004
    Ourisson G, Albrecht P, Rohmer M. 1979. The hopanoids: palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry, 51(4): 709–729. doi: 10.1351/pac197951040709
    Ourisson G, Albrecht P, Rohmer M. 1982. Predictive microbial biochemistry—from molecular fossils to procaryotic membranes. Trends in Biochemical Sciences, 7(7): 236–239. doi: 10.1016/0968-0004(82)90028-7
    Paul S, Sharma J, Singh B D, et al. 2015. Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India. International Journal of Coal Geology, 149: 77–92. doi: 10.1016/j.coal.2015.06.017
    Peters K E, Fraser T H, Amris W, et al. 1999. Geochemistry of crude oils from eastern Indonesia. AAPG Bulletin, 83(12): 1927–1942
    Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide. Cambridge: Cambridge University Press
    Philp R P, Gilbert T D. 1986. Biomarker distributions in australian oils predominantly derived from terrigenous source material. Organic Geochemistry, 10(1–3): 73–84
    Preston J C, Edwards D. 2000. The petroleum geochemistry of oils and source rocks from the northern Bonaparte Basin, offshore northern Australia. The APPEA Journal, 40(1): 257–282. doi: 10.1071/AJ99014
    Ren Jianye, Lei Chao, Wang Shan, et al. 2011. Tectonic stratigraphic framework of Yinggehai-Qiongdongnan Basins and its implication for tectonic province division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303–3314
    Ren Jinfeng, Wang Hua, Sun Ming, et al. 2014. Sequence stratigraphy and sedimentary facies of lower Oligocene Yacheng Formation in deepwater area of Qiongdongnan Basin, northern South China Sea: implications for coal-bearing source rocks. Journal of Earth Science, 25(5): 871–883. doi: 10.1007/s12583-014-0479-6
    Ren Jinfeng, Zhang Yingzhao, Wang Hua, et al. 2015. Identification methods of coal-bearing source rocks for Yacheng Formation in the western deepwater area of South China Sea. Acta Oceanologica Sinica, 34(4): 19–31. doi: 10.1007/s13131-015-0647-2
    Rudra A, Dutta S, Raju S V. 2017. The Paleogene vegetation and petroleum system in the tropics: A biomarker approach. Marine and Petroleum Geology, 86: 38–51. doi: 10.1016/j.marpetgeo.2017.05.008
    Samad S K, Mishra D K, Mathews R P, et al. 2020. Geochemical attributes for source rock and palaeoclimatic reconstruction of the Auranga Basin, India. Journal of Petroleum Science and Engineering, 185: 106665. doi: 10.1016/j.petrol.2019.106665
    Seifert W K, Moldowan M J. 1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42(1): 77–95. doi: 10.1016/0016-7037(78)90219-3
    Seifert W K, Moldowan J M. 1986. Use of biological markers in petroleum exploration. In: Johns R B, ed. Methods in Geochemistry and Geophysics. Msterdam: Elsevier, 261–290
    Simoneit B R T, Oros D R, Karwowski Ł, et al. 2020. Terpenoid biomarkers of ambers from Miocene tropical paleoenvironments in Borneo and of their potential extant plant sources. International Journal of Coal Geology, 221: 103430. doi: 10.1016/j.coal.2020.103430
    Su Ao, Chen Honghan, Chen Xu, et al. 2018. New insight into origin, accumulation and escape of natural gas in the Songdong and Baodao regions in the eastern Qiongdongnan Basin, South China Sea. Journal of Natural Gas Science and Engineering, 52: 467–483. doi: 10.1016/j.jngse.2018.01.026
    Su Ao, Chen Honghan, He Cong, et al. 2017. Complex accumulation and leakage of YC21–1 gas bearing structure in Yanan Sag, Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 88: 798–813. doi: 10.1016/j.marpetgeo.2017.09.020
    Su Long, Zheng Jianjing, Chen Guojun, et al. 2012. The upper limit of maturity of natural gas generation and its implication for the Yacheng Formation in the Qiongdongnan Basin, China. Journal of Asian Earth Sciences, 54–55: 203–213
    Tamburini F, Adatte T, Föllmi K, et al. 2003. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0–140 000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea. Marine Geology, 201(1–3): 147–168
    Ten Haven H L, De Leeuw J W, Schenck P A. 1985. Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I: Hydrocarbon biological markers for a hypersaline environment. Geochimica et Cosmochimica Acta, 49(10): 2181–2191. doi: 10.1016/0016-7037(85)90075-4
    Ten Haven H L, Rullkötter J. 1988. The diagenetic fate of taraxer-14-ene and oleanene isomers. Geochimica et Cosmochimica Acta, 52(10): 2543–2548. doi: 10.1016/0016-7037(88)90312-2
    Ten Haven H L, Rullkötter J, De Leeuw J W, et al. 1988. Pristane/phytane ratio as environmental indicator. Nature, 333(6174): 604–604
    Van Aarssen B G K, Alexander R, Kagi R I. 2000. Higher plant biomarkers reflect palaeovegetation changes during Jurassic times. Geochimica et Cosmochimica Acta, 64(8): 1417–1424. doi: 10.1016/S0016-7037(99)00432-9
    Van Aarssen B G K, Hessels J K C, Abbink O A, et al. 1992. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from Southeast Asia. Geochimica et Cosmochimica Acta, 56(3): 1231–1246. doi: 10.1016/0016-7037(92)90059-R
    Volkman J K. 2005. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Organic Geochemistry, 36(2): 139–159. doi: 10.1016/j.orggeochem.2004.06.013
    Vuković N, Životić D, Filho J G M, et al. 2016. The assessment of maturation changes of humic coal organic matter—Insights from closed-system pyrolysis experiments. International Journal of Coal Geology, 154–155: 213–239
    Wang Dongdong, Dong Guoqi, Zhang Gongcheng, et al. 2020. Coal seam development characteristics and distribution predictions in marginal sea basins: Oligocene Yacheng Formation coal measures, Qiongdongnan Basin, northern region of the South China Sea. Australian Journal of Earth Sciences, 67(3): 393–409. doi: 10.1080/08120099.2019.1661286
    Wang Zhengfeng, Jiang Tao, Zhang Daojun, et al. 2015a. Evolution of deepwater sedimentary environments and its implication for hydrocarbon exploration in Qiongdongnan Basin, northwestern South China Sea. Acta Oceanologica Sinica, 34(4): 1–10. doi: 10.1007/s13131-015-0645-4
    Wang Ce, Liang Xinquan, Foster D A, et al. 2016. Zircon U-Pb geochronology and heavy mineral composition constraints on the provenance of the middle Miocene deep-water reservoir sedimentary rocks in the Yinggehai-Song Hong Basin, South China Sea. Marine and Petroleum Geology, 77: 819–834. doi: 10.1016/j.marpetgeo.2016.05.009
    Wang Zhengfeng, Liu Zhen, Cao Shang, et al. 2014a. Vertical migration through faults and hydrocarbon accumulation patterns in deepwater areas of the Qiongdongnan Basin. Acta Oceanologica Sinica, 33(12): 96–106. doi: 10.1007/s13131-014-0579-2
    Wang Zhengfeng, Shi Xiaobin, Yang Jun, et al. 2014b. Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin. Acta Oceanologica Sinica, 33(12): 107–117. doi: 10.1007/s13131-014-0580-9
    Wang Zhengfeng, Sun Zhipeng, Zhang Daojun, et al. 2015b. Geology and hydrocarbon accumulations in the deepwater of the northwestern South China Sea—with focus on natural gas. Acta Oceanologica Sinica, 34(10): 57–70. doi: 10.1007/s13131-015-0715-7
    Wang Zhenfeng, Sun Zhipeng, Zhu Jitian, et al. 2015c. Natural gas geological characteristics and great discovery of large gas fields in deep-water area of the western South China Sea. Natural Gas Industry B, 2(6): 489–498. doi: 10.1016/j.ngib.2016.03.001
    Wang Dongdong, Zhang Gongcheng, Li Zengxue, et al. 2021. The development characteristics and distribution predictions of the Paleogene coal-measure source rock in the Qiongdongnan Basin, northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 105–120. doi: 10.1111/1755-6724.14625
    Webster P J. 1994. The role of hydrological processes in ocean-atmosphere interactions. Reviews of Geophysics, 32(4): 427–476. doi: 10.1029/94RG01873
    Wingert W S, Pomerantz M. 1986. Structure and significance of some twenty-one and twenty-two carbon petroleum steranes. Geochimica et Cosmochimica Acta, 50(12): 2763–2769. doi: 10.1016/0016-7037(86)90225-5
    Wu Piao, Hou Dujie, Gan Jun, et al. 2018a. Paleoenvironment and controlling factors of Oligocene source rock in the eastern deep-water area of the Qiongdongnan Basin: evidences from organic geochemistry and palynology. Energy & Fuels, 32(7): 7423–7437
    Wu Xiaochuan, Pu Renhai, Chen Ying, et al. 2018b. Seismic analysis of early-mid Miocene carbonate platform in the southern Qiongdongnan Basin, South China Sea. Acta Oceanologica Sinica, 37(2): 54–65. doi: 10.1007/s13131-017-1128-6
    Wu Guoxuan, Qin Jungan, Mao Caizhi. 2003. Deep-water Oligocene pollen record from South China Sea. Chinese Science Bulletin, 48(22): 2511–2515
    Xiao Xianming, Xiong M, Tian Hui, et al. 2006. Determination of the source area of the Ya13–1 gas pool in the Qiongdongnan Basin, South China Sea. Organic Geochemistry, 37(9): 990–1002. doi: 10.1016/j.orggeochem.2006.06.001
    Xu Min, Hou Dujie, Lin Xiaoyun, et al. 2022. Organic geochemical signatures of source rocks and oil-source correlation in the Papuan Basin, Papua New Guinea. Journal of Petroleum Science and Engineering, 210: 109972. doi: 10.1016/j.petrol.2021.109972
    Yang Gengxiong, Yin Hongwei, Gan Jun, et al. 2022. Explaining structural difference between the eastern and western zones of the Qiongdongnan Basin, northern South China Sea: insights from scaled physical models. Tectonics, 41(2): e2021TC006899
    Zhang Gongcheng, Wang Dongdong, Zeng Qingbo, et al. 2019. Characteristics of coal-measure source rock and gas accumulation belts in marine-continental transitional facies fault basins: A case study of the Oligocene deposits in the Qiongdongnan Basin located in the northern region of the South China Sea. Energy Exploration & Exploitation, 37(6): 1752–1778
    Zhang Gongcheng, Zeng Qingbo, Su Long, et al. 2016. Accumulation mechanism of LS 17–2 deep water giant gas field in Qiongdongnan Basin. Acta Petrolei Sinica, 37(S1): 34–46
    Zhao Rui, Chen Si, Olariu C, et al. 2019. A model for oblique accretion on the South China Sea margin; Red River (Song Hong) sediment transport into Qiongdongnan Basin since upper Miocene. Marine Geology, 416: 106001. doi: 10.1016/j.margeo.2019.106001
    Zhao Meng, Shao Lei, Liang Jianshe, et al. 2015. No Red River capture since the late Oligocene: Geochemical evidence from the northwestern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 122: 185–194. doi: 10.1016/j.dsr2.2015.02.029
    Zhou Yi, Sheng Guoying, Fu Jiamo, et al. 2003. Triterpane and sterane biomarkers in the YA13–1 condensates from Qiongdongnan Basin, South China Sea. Chemical Geology, 199(3–4): 343–359
    Zhu Weilin, Shi Hesheng, Huang Baojia, et al. 2021. Geology and geochemistry of large gas fields in the deepwater areas, continental margin basins of northern South China Sea. Marine and Petroleum Geology, 126: 104901. doi: 10.1016/j.marpetgeo.2021.104901
    Zhu Yangming, Sun Linting, Hao Fang, et al. 2018. Geochemical composition and origin of Tertiary oils in the Yinggehai and Qiongdongnan Basins, offshore South China Sea. Marine and Petroleum Geology, 96: 139–153. doi: 10.1016/j.marpetgeo.2018.05.029
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  548
  • HTML全文浏览量:  193
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 录用日期:  2022-06-28
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回