Epipelagic mesozooplankton communities in the northeastern Indian Ocean off Myanmar during the winter monsoon

Ping Du Dingyong Zeng Feilong Lin Sanda Naing Zhibing Jiang Jingjing Zhang Di Tian Qinghe Liu Yuanli Zhu Soe Moe Lwin Wenqi Ye Chenggang Liu Lu Shou Feng Zhou

Ping Du, Dingyong Zeng, Feilong Lin, Sanda Naing, Zhibing Jiang, Jingjing Zhang, Di Tian, Qinghe Liu, Yuanli Zhu, Soe Moe Lwin, Wenqi Ye, Chenggang Liu, Lu Shou, Feng Zhou. Epipelagic mesozooplankton communities in the northeastern Indian Ocean off Myanmar during the winter monsoon[J]. Acta Oceanologica Sinica, 2023, 42(6): 57-69. doi: 10.1007/s13131-022-2090-5
Citation: Ping Du, Dingyong Zeng, Feilong Lin, Sanda Naing, Zhibing Jiang, Jingjing Zhang, Di Tian, Qinghe Liu, Yuanli Zhu, Soe Moe Lwin, Wenqi Ye, Chenggang Liu, Lu Shou, Feng Zhou. Epipelagic mesozooplankton communities in the northeastern Indian Ocean off Myanmar during the winter monsoon[J]. Acta Oceanologica Sinica, 2023, 42(6): 57-69. doi: 10.1007/s13131-022-2090-5

doi: 10.1007/s13131-022-2090-5

Epipelagic mesozooplankton communities in the northeastern Indian Ocean off Myanmar during the winter monsoon

Funds: The Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources under contract No. JG2210; the Global Change and Air-Sea Interaction II Program under contract No. GASI-01-EIND-STwin; the National Natural Science Foundation of China under contract Nos 42176148 and 42176039.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Sampling stations in the northeastern Indian Ocean during February 2020.

    Figure  2.  Water depth and mixed layer depth (MLD) measured during the sampling period. The different colors of squares indicate water depths: yellow: 52−79 m, orange: 112−137 m, dark orange: 295 m, green: 639−766 m, blue: 1517−1523 m, dark blue: 2431−2801 m. Numbers above the square indicate MLDs.

    Figure  3.  Vertical profiles of temperature (a), salinity (b) and dissolved oxygen concentration (c) of the selected section (d).

    Figure  4.  Surface values of temperature (a), salinity (b), dissolved oxygen concentration (c), and chlorophyll a concentration (d). SST: sea surface temperature; SSS: sea surface salinity; SDO: surface dissolved oxygen; SCHLA: surface chlorophyll a.

    Figure  5.  Column mean values of temperature (a), salinity (b), dissolved oxygen concentration (c), and chlorophyll a concentration (d) from 200 m (or the bottom) to the surface. CMT: column mean temperature; CMS: column mean salinity; CMDO: column mean dissolved oxygen; CMCHLA: column mean chlorophyll a.

    Figure  6.  Mesozooplankton community clusters according to taxonomic abundance datasets. Three groups (A: open ocean, B: transition zone, C: nearshore water) were divided at 50% similarity; Group B was divided into two subgroups (B-1 and B-2) at 60% similarity, while Group C was divided into three subgroups (C-1, C-2 and C-3) at 61% similarity. Green stars indicate Group A; light and dark blue triangles indicate Groups B-1 and B-2, respectively; yellow, orange and light orange circles indicate Groups C-1, C-2 and C-3, respectively.

    Figure  7.  Spatial variations in mesozooplankton abundance (a) and dry biomass (b) in towed water column (200 m or from the bottom to the surface for shallower stations).

    Figure  8.  Relationship between ten environmental variables and the mesozooplankton community by interactive-forward-selection RDA. Green stars indicate Group A; light and dark blue triangles indicate Groups B-1 and B-2, respectively; yellow, orange and light orange circles indicate Groups C-1, C-2 and C-3, respectively. MLD: mixed layer depth; SST: sea surface temperature; SSS: sea surface salinity; SDO: surface dissolved oxygen concentration; SCHLA: surface chlorophyll a concentration; CMT: column mean temperature; CMS: column mean salinity; CMDO: column mean dissolved oxygen concentration; CMCHLA: column mean chlorophyll a concentration.

    Figure  9.  Diagram of “Var-part-3groups-simple-effects-tested-FS” variation partition analysis. a, b, and c represent parts individually controlled by physical, chemical and biological factors, respectively; d represents the part controlled jointly by physical and chemical factors; e represents the part controlled jointly by chemical and biological factors; f represents the part controlled jointly by physical and biological factors; g represents the part controlled by physical, chemical and biological factors collectively. Values under the letters represent explained percentage. Physical factors include depth, mixed layer depth, sea surface temperature, sea surface salinity, column mean temperature, and column mean salinity; chemical factors include surface dissolved oxygen and column mean dissolved oxygen; and biological factors include surface chlorophyll a and column mean chlorophyll a.

    Figure  10.  Relationship between ten environmental variables and mesozooplankton taxa by interactive-forward-selection redundancy analysis. C. farrani: Clausocalanus farrani; E. concinna: Euchaeta concinna; C. dentata: Cypridina dentata; P. robusta: Pleuromamma robusta; C. plumulosus: Calocalanus plumulosus; M. phasma: Mormonilla phasma. MLD: mixed layer depth; SST: sea surface temperature; SSS: sea surface salinity; SDO: surface dissolved oxygen concentration; SCHLA: surface chlorophyll a concentration; CMT: column mean temperature; CMS: column mean salinity; CMDO: column mean dissolved oxygen concentration; CMCHLA: column mean chlorophyll a concentration.

    Table  1.   Spatial variations in mesozooplankton abundance (ind./m3) and dry biomass (mg/m3)

    GroupSubgroupAbundance in subgroupDry biomass in subgroupAbundance in groupsDry biomass in groups
    A394.7±80.9b4.0±0.4b
    BB-11519.8±268.716.3±4.71265.7±343.8b15.2±4.7b
    B-21011.6±177.214.2±5.2
    CC-14332.7±171.626.3±6.22958.5±1030.3a24.8±3.7a
    C-22116.0±298.023.6±3.3
    C-32848.1±481.125.0±3.9
    Note: Different lowercase letters (a, b) in the same index indicate significant differences among groups (p<0.05). − represents no data.
    下载: 导出CSV

    Table  2.   Spatial variations in the relative abundances (%) of the mesozooplankton taxa

    Taxonomic groupsOrderDifferences in OrderDifferences in Taxonomic groups
    Group AGroup BGroup CGroup AGroup BGroup C
    Subclass CopepodaCalanoida38.2±0.637.3±8.144.7±4.781.4±7.679.9±5.085.9±5.7
    Cyclopoida40.2±5.939.0±6.540.8±8.0
    Harpacticoida0.4±0.10.5±0.30.3±0.3
    >Mormonilloida2.6±1.2ab3.2±2.2a0.1±0.3b
    Subclass MalacostracaAmphipoda0.1±0.10.2±0.20.0±0.10.3±0.40.6±0.40.2±0.3
    Mysida0.0±0.00.0±0.00.0±0.0
    Euphausiacea0.2±0.30.4±0.30.1±0.1
    Decapoda0.0±0.00.0±0.00.0±0.1
    Cumacea0.0±0.00.0±0.00.0±0.0
    Subclass PhyllopodaCladocera0.2±0.30.1±0.20.0±0.0
    Subclass Ostracoda2.1±0.6ab3.6±2.6a0.9±0.6b
    Class Appendicularia8.7±4.78.9±3.77.6±5.2
    Class Thaliacea0.5±0.0ab1.0±0.7a0.1±0.2b
    Class Polychaeta0.3±0.00.2±0.30.2±0.3
    Phylum Chaetognatha1.7±0.8ab1.9±0.7a0.8±0.6b
    Phylum Cnidaria0.4±0.11.2±0.60.4±0.6
    Phylum Ctenophora0.0±0.00.0±0.00.0±0.0
    Phylum Mollusca0.8±0.10.3±0.20.6±0.7
    Phylum Protozoa 0.5±0.50.2±0.20.4±0.3
    Note: Different lowercase letters (a, b) in the same index indicate significant differences among groups (p<0.05). − represents these taxonomic groups are not subdivided by order.
    下载: 导出CSV

    Table  3.   Spatial variations in the relative abundances (%) of the dominant species

    TaxaDominant speciesGroup AGroup BGroup C
    CopepodaOncaea venusta23.6±4.219.9±6.522.9±6.2
    CopepodaOithona spp.10.6±1.212.0±3.013.9±5.0
    CopepodaParacalanus aculeatus10.8±2.67.8±3.013.8±6.9
    AppendiculariaOikopleura spp.7.7±4.58.4±3.57.5±5.2
    CopepodaClausocalanus farrani6.0±0.3ab3.0±1.6b6.9±3.0a
    CopepodaSubeucalanus subtenuis0.7±0.62.3±2.03.9±2.9
    CopepodaClausocalanus furcatus2.9±1.75.2±2.52.8±2.3
    CopepodaEuchaeta larva1.7±0.01.6±0.72.7±2.4
    CopepodaClausocalanus/Paracalanus larva1.4±0.42.5±2.02.6±2.6
    CopepodaNeocalanus larva2.8±1.02.3±1.42.5±1.4
    CopepodaAcrocalanus gibber0.9±0.31.8±1.01.9±1.2
    CopepodaFarranula gibbula2.8±0.11.7±1.21.4±0.9
    CopepodaTriconia conifera0.7±0.62.2±1.31.0±0.6
    CopepodaEuchaeta concinna0.7±0.6ab0.2±0.2b1.0±0.9a
    CopepodaCanthocalanus pauper0.5±0.21.2±0.71.0±0.8
    CopepodaMormonilla phasma2.6±1.2ab3.2±2.2a0.1±0.3b
    OstracodaCypridina dentata0.1±0.2ab1.7±1.9a0.2±0.3b
    CopepodaTemora turbinate0.3±0.41.5±1.80.6±1.6
    CopepodaScolecithricella nicobarica0.7±0.61.3±0.80.7±0.5
    OstracodaEuconchoecia aculeata0.9±0.11.0±0.70.5±0.5
    CopepodaCorycaeidae larva0.2±0.21.0±0.70.5±0.7
    CopepodaCalocalanus plumulosus1.5±0.9a0.3±0.4ab0.1±0.2b
    Planktonic larvaCopepoda nauplius larva1.3±0.60.4±0.40.9±0.6
    CopepodaPleuromamma robusta1.0±1.0a0.3±0.1b0.1±0.1b
    AppendiculariaFritillaridae spp.1.0±0.20.5±0.50.1±0.1
    ChaetognathaSerratosagitta pacifica1.0±0.60.4±0.30.5±0.5
    Note: Dominant species were defined as having a relative abundance of greater than 1% in at least one group. Different lowercase letters (a, b) in the same index indicate significant differences among groups (p<0.05).
    下载: 导出CSV

    Table  4.   Spatial variations in the environmental variables by the Kruskal–Wallis test

    Environmental variablesGroup AGroup BGroup C
    Depth/m2468.5±53.0a1473.6±920.3a89.1±35.0b
    MLD/m32.5±9.228.4±14.914.4±6.3
    SST/℃27.0±1.526.3±0.927.6±0.8
    SSS32.1±0.132.2±0.531.7±0.6
    SDO concentration/(mg·L−1)6.4±0.16.5±0.16.3±0.1
    SCHLA concentration/(µg·L−1)0.3±0.00.4±0.10.6±0.3
    CMT/℃21.0±0.9ab20.3±0.6b23.6±1.4a
    CMS34.0±0.1a34.1±0.2a33.6±0.3b
    CMDO concentration/(mg·L−1)2.6±0.22.2±0.43.0±0.8
    CMCHLA concentration/(µg·L−1)0.3±0.1ab0.3±0.0b0.7±0.2a
    Micro SCHLA/%7.18.520.8±8.0
    Nano SCHLA/%15.913.719.6±5.5
    Pico SCHLA/%77.077.759.6±11.6
    Note: Different lowercase letters (a, b) in the same index indicate significant differences between groups (p<0.05). Size-fractionated chlorophyll a concentrations were measured only at representative stations (M7 in Group A; M9 in Group B; M1, M2, M13, M14 in Group C). A Kruskal–Wallis test was not performed for size-fractionated Chl a. MLD: mixed layer depth; SST: sea surface temperature; SSS: sea surface salinity; SDO: surface dissolved oxygen; SCHLA: surface chlorophyll a; CMT: column mean temperature; CMS: column mean salinity; CMDO: column mean dissolved oxygen; CMCHLA: column mean chlorophyll a. Micro SCHLA, Nano SCHLA and Pico SCHLA represent proportions of micro- (>20 µm), nano- (2−20 µm), and pico- (0.7−2 µm) surface chlorophyll a concentration to total surface chlorophyll a concentration, respectively.
    下载: 导出CSV

    Table  5.   Results of interactive-forward-selection redundancy analyses

    Environmental variablesFigure 8Figure 10
    Explains/%pseudo-Fpp(adj)Explain/%pseudo-Fpp(adj)
    CMCHLA43.111.40.0060.0630.06.40.0020.020
    CMDO12.74.00.0300.35.21.40.2321
    CMT12.65.20.0080.086.61.80.1481
    CMS6.63.20.0300.310.52.50.0180.162
    SCHLA2.61.30.26015.61.60.1581
    SDO2.41.20.28211.50.40.8221
    SST3.62.00.14418.62.20.0380.304
    Depth1.00.50.66212.20.60.7781
    SSS1.20.60.61013.30.90.4901
    MLD0.2<0.10.98015.11.60.1861
    Note: MLD: mixed layer depth; SST: sea surface temperature; SSS: sea surface salinity; SDO: surface dissolved oxygen concentration; SCHLA: surface chlorophyll a concentration. CMT: column mean temperature; CMS: column mean salinity; CMDO: column mean dissolved oxygen concentration; CMCHLA: column mean chlorophyll a concentration; adj: adjusted.
    下载: 导出CSV

    Table  6.   Species number, abundance, and dry biomass of zooplankton in Indo-Pacific waters

    Research areaLayerSpecies numberMesh sizeSampling timeAbundance/(ind.·m−3)Dry biomassReference
    Northern Andaman Sea off Myanmar0−200 m (or bottom)213200 μmFebruary1916.7
    (337.5−4454.0)
    17.8 mg/m3 (3.7−30.7 mg/m3)
    6.1 mg/m3 (in terms of C);
    845.7 mg/m2 (in terms of C)
    this study
    surface layer200 μmSpring106.1−945.04.4−38.6 mg/m3Jyothibabu et al. (2014)
    Other Indian watersoff North coastal Andhra Pradeshsurface layer112200 μmJanuary, April, May, November4473.027.8 mg/m3Rakhesh et al. (2006)
    off Rushikulya Estuary0−bottom (<200 m)93120 μmJanuary−June340.0−6550.0Mohanty et al. (2010)
    Kodiakkarai coastal waterssurface layer121158 μmtwelve monthsDamotharan et al. (2010)
    Open water in Pacific, BOB, and Arabian Seawestern boundary currents in the subtropical North Pacific0−200 m160 μmWinter206.6 (35.1−456.8)Dai et al. (2016)
    western tropical
    Pacific Ocean
    0−200 m259200 μmSummer146.74.9 mg/m3Yang et al. (2017)
    southern BOB0−200 m187505 μmSpring33.4Li et al. (2017)
    western BOB0−bottom of thermocline200 μmWinter777.0 mg/m2 (in terms of C)Jyothibabu et al. (2008)
    southwestern BOB influenced by a cyclonic eddymixed layer200 μmWinter760.9 (337.5−4454.0)35.9 mg/m3 (in terms of C)Jayalakshmi et al. (2015)
    northern side of cyclonic eddy in central BOBmixed layer200 μmWinter277.020.0 mg/m3 (in terms of C)Sabu et al. (2015)
    western Arabian Sea0–150 m333 μmFebruary289.914.7 mg/m3 (in terms of C)Koppelmann et al. (2003)
    central Arabian Sea 0–150 m 333 μm February371.313.1 mg/m3 (in terms of C)Koppelmann et al. (2003)
    BOBwestern BOB0−bottom of thermocline200 μmWinter777±433 mg/m2 (in terms of C)Jyothibabu et al. (2008)
    Spring 223±236 mg/m2 (in terms of C) Jyothibabu et al. (2008)
    southwestern BOBSummer 628±499 mg/m2 (in terms of C) Jyothibabu et al. (2008)
    Winter70−42888.9−35.9 mg/m3 (in terms of C)Jayalakshmi et al. (2015)
    western BOBmixed layer200 μmSpring2−53401.7−162.6 mg/m3 (in terms of C)Fernandes and Ramaiah (2019)
    Summer25−46211.3–31.0 mg/m3 (in terms of C)Fernandes and Ramaiah (2009)
    Autumn100−24822.4−53.6 mg/m3 (in terms of C)Fernandes and Ramaiah (2013)
    Note: Conversion factors for deriving zooplankton carbon biomass from the displacement volume of zooplankton used were as follows: (1) 1 mL zooplankton = 75 mg dry weight; (2) 1 mg dry weight zooplankton = 0.342 mg carbon of zooplankton (Fernandes and Ramaiah, 2009). − represents no data.
    下载: 导出CSV
  • Ashjian C J, Campbell R G, Gelfman C, et al. 2017. Mesozooplankton abundance and distribution in association with hydrography on Hanna Shoal, NE Chukchi Sea, during August 2012 and 2013. Deep-Sea Research Part II: Topical Studies in Oceanography, 144: 21–36. doi: 10.1016/j.dsr2.2017.08.012
    Cepeda G D, Viñas M D, Molinari G N, et al. 2020. The impact of Río de la Plata plume favors the small-sized copepods during summer. Estuarine, Coastal and Shelf Science, 245: 107000
    Chatterjee A, Shankar D, McCreary J P, et al. 2017. Dynamics of Andaman Sea circulation and its role in connecting the equatorial Indian Ocean to the Bay of Bengal. Journal of Geophysical Research: Oceans, 122(4): 3200–3218. doi: 10.1002/2016JC012300
    Cornils A, Schnack-Schiel S B, Böer M, et al. 2006. Feeding of Clausocalanids (Calanoida, Copepoda) on naturally occurring particles in the northern Gulf of Aqaba (Red Sea). Marine Biology, 151(4): 1261–1274
    Dai Luping, Li Chaolun, Yang Guang, et al. 2016. Zooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012. Journal of Marine Systems, 155: 73–83. doi: 10.1016/j.jmarsys.2015.11.004
    Damotharan P, Perumal N V, Arumugam M, et al. 2010. Studies on zooplankton ecology from Kodiakkarai (point calimere) coastal waters (south east coast of India). Research Journal of Biological Sciences, 5(2): 187–198. doi: 10.3923/rjbsci.2010.187.198
    Domínguez R, Garrido S, Santos A M P, et al. 2017. Spatial patterns of mesozooplankton communities in the northwestern Iberian shelf during autumn shaped by key environmental factors. Estuarine, Coastal and Shelf Science, 198: 257–268
    Dur G, Hwang J S, Souissi S, et al. 2007. An overview of the influence of hydrodynamics on the spatial and temporal patterns of calanoid copepod communities around Taiwan. Journal of Plankton Research, 29(S1): i97–i116
    Fernandes V. 2008. The effect of semi-permanent eddies on the distribution of mesozooplankton in the central Bay of Bengal. Journal of Marine Research, 66(4): 465–488. doi: 10.1357/002224008787157430
    Fernandes V, Ramaiah N. 2009. Mesozooplankton community in the Bay of Bengal (India): spatial variability during the summer monsoon. Aquatic Ecology, 43(4): 951–963. doi: 10.1007/s10452-008-9209-4
    Fernandes V, Ramaiah N. 2013. Mesozooplankton community structure in the upper 1, 000 m along the western Bay of Bengal during the 2002 fall intermonsoon. Zoological Studies, 52(1): 31. doi: 10.1186/1810-522X-52-31
    Fernandes V, Ramaiah N. 2014. Distributional characteristics of surface-layer mesozooplankton in the Bay of Bengal during the 2005 winter monsoon. Indian Journal of Geo-Marine Sciences, 43(1): 176–188
    Fernandes V, Ramaiah N. 2019. Spatial structuring of zooplankton communities through partitioning of habitat and resources in the Bay of Bengal during spring intermonsoon. Turkish Journal of Zoology, 43(1): 68–93. doi: 10.3906/zoo-1805-6
    Fernández-Álamo M A, Färber-Lorda J. 2006. Zooplankton and the oceanography of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2–4): 318–359
    Fernández De Puelles M L, Molinero J C. 2008. Decadal changes in hydrographic and ecological time-series in the Balearic Sea (western Mediterranean), identifying links between climate and zooplankton. ICES Journal of Marine Science, 65(3): 311–317. doi: 10.1093/icesjms/fsn017
    Gomes H R, Goes J I, Saino T. 2000. Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Continental Shelf Research, 20(3): 313–330. doi: 10.1016/S0278-4343(99)00072-2
    Hossain M S, Sarker S, Sharifuzzaman S M, et al. 2020. Primary productivity connects hilsa fishery in the Bay of Bengal. Scientific Reports, 10(1): 5659. doi: 10.1038/s41598-020-62616-5
    Irigoien X, Harris R P. 2006. Comparative population structure, abundance and vertical distribution of six copepod species in the North Atlantic: Evidence for intraguild predation?. Marine Biology Research, 2(4): 276–290
    Ittekkot V, Nair R R, Honjo S, et al. 1991. Enhanced particle fluxes in Bay of Bengal induced by injection of fresh water. Nature, 351(6325): 385–387. doi: 10.1038/351385a0
    Ivanenko V N, Defaye D. 2006. Planktonic deep-water copepods of the family Mormonillidae Giesbrecht, 1893 from the East Pacific Rise (13°N), the Northeastern Atlantic, and near the North Pole (Copepoda, Mormonilloida). Crustaceana, 79(6): 707–726. doi: 10.1163/156854006778026861
    Jagadeesan L, Jyothibabu R, Anjusha A, et al. 2013. Ocean currents structuring the mesozooplankton in the Gulf of Mannar and the Palk Bay, southeast coast of India. Progress in Oceanography, 110: 27–48. doi: 10.1016/j.pocean.2012.12.002
    Jagadeesan L, Jyothibabu R, Arunpandi N, et al. 2017. Dominance of coastal upwelling over Mud Bank in shaping the mesozooplankton along the southwest coast of India during the Southwest Monsoon. Progress in Oceanography, 156: 252–275. doi: 10.1016/j.pocean.2017.07.004
    Jayalakshmi K J, Sabu P, Devi C R A, et al. 2015. Response of micro- and mesozooplankton in the southwestern Bay of Bengal to a cyclonic eddy during the winter monsoon, 2005. Environmental Monitoring and Assessment, 187(7): 473. doi: 10.1007/s10661-015-4609-0
    Jeong M K, Suh H L, Soh H Y. 2011. Taxonomy and zoogeography of euchaetid copepods (Calanoida, Clausocalanoidea) from Korean waters, with notes on their female genital structure. Ocean Science Journal, 46(2): 117–132. doi: 10.1007/s12601-011-0011-1
    Jyothibabu R, Madhu N V, Maheswaran P A, et al. 2008. Seasonal variation of microzooplankton (20–200 μm) and its possible implications on the vertical carbon flux in the western Bay of Bengal. Continental Shelf Research, 28(6): 737–755. doi: 10.1016/j.csr.2007.12.011
    Jyothibabu R, Win N N, Shenoy D M, et al. 2014. Interplay of diverse environmental settings and their influence on the plankton community off Myanmar during the Spring Intermonsoon. Journal of Marine Systems, 139: 446–459. doi: 10.1016/j.jmarsys.2014.08.003
    Koppelmann R, Fabian H, Weikert H. 2003. Temporal variability of deep-sea zooplankton in the Arabian Sea. Marine Biology, 142(5): 959–970. doi: 10.1007/s00227-002-0999-y
    Köster M, Paffenhöfer G A. 2016. How efficiently can doliolids (Tunicata, Thaliacea) utilize phytoplankton and their own fecal pellets?. Journal of Plankton Research, 39(2): 305–315
    Li Kaizhi, Yin Jianqiang, Huang Liangmin, et al. 2010. Advances on classification and ecology of pelagic tunicates. Acta Ecologica Sinica (in Chinese), 30(1): 174–185
    Li Kaizhi, Yin Jianqiang, Huang Liangmin, et al. 2017. A comparison of the zooplankton community in the Bay of Bengal and South China Sea during April–May, 2010. Journal of Ocean University of China, 16(6): 1206–1212. doi: 10.1007/s11802-017-3229-4
    Liao Jiawen, Peng Shiqiu, Wen Xixi. 2020. On the heat budget and water mass exchange in the Andaman Sea. Acta Oceanologica Sinica, 39(7): 32–41. doi: 10.1007/s13131-019-1627-8
    Liu Yanliang, Li Kuiping, Ning Chunlin, et al. 2018. Observed seasonal variations of the upper ocean structure and air-sea interactions in the Andaman Sea. Journal of Geophysical Research: Oceans, 123(2): 922–938. doi: 10.1002/2017JC013367
    Madhu N V, Jyothibabu R, Maheswaran P A, et al. 2006. Lack of seasonality in phytoplankton standing stock (chlorophyll a) and production in the western Bay of Bengal. Continental Shelf Research, 26(16): 1868–1883. doi: 10.1016/j.csr.2006.06.004
    Madhupratap M, Gauns M, Ramaiah N, et al. 2003. Biogeochemistry of the Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(5): 881–896. doi: 10.1016/S0967-0645(02)00611-2
    McCreary J P, Kundu P K, Molinari R L. 1993. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Progress in Oceanography, 31(3): 181–244. doi: 10.1016/0079-6611(93)90002-U
    Mills C E. 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES Journal of Marine Science, 52(3–4): 575–581
    Mohanty A K, Sahu G, Singhsamanta B, et al. 2010. Zooplankton diversity in the nearshore waters of Bay of Bengal, off Rushikulya Estuary. The IUP Journal of Environmental Sciences, 4(2): 61–85
    Nuncio M, Kumar S P. 2012. Life cycle of eddies along the western boundary of the Bay of Bengal and their implications. Journal of Marine Systems, 94: 9–17. doi: 10.1016/j.jmarsys.2011.10.002
    Paffenhoefer G A, Knowles S C. 1979. Ecological implications of fecal pellet size, production and consumption by copepods. Journal of Marine Research, 37: 35–49
    Paffenhöfer G A. 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). Journal of Plankton Research, 15(1): 37–55. doi: 10.1093/plankt/15.1.37
    Prasanna Kumar S, Muraleedharan P M, Prasad T G, et al. 2002. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea?. Geophysical Research Letters, 29(24): 2235
    Prasanna Kumar S, Narvekar J, Nuncio M, et al. 2010. Is the biological productivity in the Bay of Bengal light limited?. Current Science, 98(10): 1331–1339
    Prasanna Kumar S, Nuncio M, Narvekar J, et al. 2004. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal?. Geophysical Research Letters, 31(7): L07309
    Rakhesh M, Raman A V, Sudarsan D. 2006. Discriminating zooplankton assemblages in neritic and oceanic waters: a case for the northeast coast of India, Bay of Bengal. Marine Environmental Research, 61(1): 93–109. doi: 10.1016/j.marenvres.2005.06.002
    Ramaswamy V, Gaye B, Shirodkar P V, et al. 2008. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Marine Chemistry, 111(3–4): 137–150
    Ramaswamy V, Rao P S, Rao K H, et al. 2004. Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban. Marine Geology, 208(1): 33–42. doi: 10.1016/j.margeo.2004.04.019
    Rao P S, Ramaswamy V, Thwin S. 2005. Sediment texture, distribution and transport on the Ayeyarwady continental shelf, Andaman Sea. Marine Geology, 216(4): 239–247. doi: 10.1016/j.margeo.2005.02.016
    Rodolfo K S. 1969. Sediments of the Andaman Basin, northeastern Indian Ocean. Marine Geology, 7(5): 371–402. doi: 10.1016/0025-3227(69)90014-0
    Sabu P, Devi C R A, Lathika C T, et al. 2015. Characteristics of a cyclonic eddy and its influence on mesozooplankton community in the northern Bay of Bengal during early winter monsoon. Environmental Monitoring and Assessment, 187(6): 330. doi: 10.1007/s10661-015-4571-x
    Schott F A, McCreary J P. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51(1): 1–123. doi: 10.1016/S0079-6611(01)00083-0
    Shankar D, Vinayachandran P N, Unnikrishnan A S. 2002. The monsoon currents in the north Indian Ocean. Progress in Oceanography, 52(1): 63–120. doi: 10.1016/S0079-6611(02)00024-1
    Skjoldal H R, Wiebe P H, Postel L, et al. 2013. Intercomparison of zooplankton (net) sampling systems: results from the ICES/GLOBEC sea-going workshop. Progress in Oceanography, 108: 1–42. doi: 10.1016/j.pocean.2012.10.006
    Šmilauer P, Lepš J. 2014. Multivariate analysis of ecological data using Canoco 5, second edition. Cambridge, UK: Cambridge University Press, 362
    Srichandan S, Baliarsingh S K, Prakash S, et al. 2018. Zooplankton research in Indian seas: a review. Journal of Ocean University of China, 17(5): 1149–1158. doi: 10.1007/s11802-018-3463-4
    Steinberg D K, Lomas M W, Cope J S. 2012. Long-term increase in mesozooplankton biomass in the Sargasso Sea: linkage to climate and implications for food web dynamics and biogeochemical cycling. Global Biogeochemical Cycles, 26(1): GB1004
    Subramanian V. 1993. Sediment load of Indian Rivers. Current Science, 64(11–12): 928–930
    Yang Guang, Li Chaolun, Wang Yanqing, et al. 2017. Spatial variation of the zooplankton community in the western tropical Pacific Ocean during the summer of 2014. Continental Shelf Research, 135: 14–22. doi: 10.1016/j.csr.2017.01.009
    Yuan L L, Pollard A I. 2018. Changes in the relationship between zooplankton and phytoplankton biomasses across a eutrophication gradient. Limnology and Oceanography, 63(6): 2493–2507. doi: 10.1002/lno.10955
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  107
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 录用日期:  2022-07-28
  • 网络出版日期:  2023-02-02
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回