Nitrate isotope dynamics in the lower euphotic-upper mesopelagic zones of the western South China Sea

Zixuan Li Chao Xu Minfang Zheng Mengya Chen Yusheng Qiu Hantao Zhou Min Chen Run Zhang

Zixuan Li, Chao Xu, Minfang Zheng, Mengya Chen, Yusheng Qiu, Hantao Zhou, Min Chen, Run Zhang. Nitrate isotope dynamics in the lower euphotic-upper mesopelagic zones of the western South China Sea[J]. Acta Oceanologica Sinica, 2023, 42(1): 1-11. doi: 10.1007/s13131-022-2091-4
Citation: Zixuan Li, Chao Xu, Minfang Zheng, Mengya Chen, Yusheng Qiu, Hantao Zhou, Min Chen, Run Zhang. Nitrate isotope dynamics in the lower euphotic-upper mesopelagic zones of the western South China Sea[J]. Acta Oceanologica Sinica, 2023, 42(1): 1-11. doi: 10.1007/s13131-022-2091-4

doi: 10.1007/s13131-022-2091-4

Nitrate isotope dynamics in the lower euphotic-upper mesopelagic zones of the western South China Sea

Funds: The National Natural Science Foundation of China under contract Nos 42076042 and 41721005; the Science and Technology Basic Resources Investigation Program of China under contract No. 2017FY201403.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Sampling locations in the western South China Sea. Arrows indicate mean sea surface geostrophic current during the period of the cruise (data source: Archiving, Validation and Interpretation of Satellite Oceanographic Data).

    Figure  2.  Temperature-salinity diagram (a); depth profiles of temperature (b), practical salinity (c), and density anomaly (d) in the upper 500 m of the western South China Sea (during sampling period). Major water masses include the near-shore surface water (SW), the surface water of the SCS (SCSSW), the subsurface water (SSW), and the intermediate water (IW), respectively. The grey line in a is isopycnal. σ0: potential density. The colorful lines and shapes of the dots in the figure represent different sampling stations.

    Figure  3.  Depth profiles of nitrate+nitrite concentration (a, b), δ15N (c, d) and δ18O (e, f) in the upper 500 m and the upper 150 m, specifically. UEZ: upper oligotrophic zone; LEZ: lower euphotic zone. The colorful lines and shapes of the dots in the figure represent different sampling stations.

    Figure  4.  Depth profile of Δ(15-18) in the upper 500 m. For those samples at 50 m and 75 m, values of δ15N and δ18O had been corrected for nitrite. See Section 4.1 for details. UEZ: upper oligotrophic zone; LEZ: lower euphotic zone; UMZ: upper portion of mesopelagic zone. The colorful lines and shapes of the dots in the figure represent different sampling stations.

    Figure  5.  Relationship of δ15N and δ18O of nitrate+nitrite and nitrate only in the LEZ. Nitrite correction is applied for samples at 50–75 m water column. The correlation for nitrate-only isotope ratios at 50 m and 75 m yields a linear relationship (δ18O=1.0×δ15N–1.4, R2=0.95, p<0.05). N2 in the air (x-axis) and the Vienna Standard Mean Ocean Water (y-axis) are chosen as the standards for N and O isotope analysis, respectively.

    Figure  6.  The N and O isotope fractionation during nitrate assimilation in Rayleigh (a) or steady-state (b) models. Data points of 50 m and 75 m are used for regression. The blue triangles represent the mean endmember value at 100 m. The standard deviation is 0.10‰ and 0.20‰ for δ15N and δ18O at 100 m, respectively. The dotted lines represent the confidence interval of 95%. The f means the ratio of the remaining reactant and initial reactant.

    Figure  7.  A brief compilation of 18εASSIM and 15εASSIM during nitrate assimilation by phytoplankton. Data are cited from the subtropical North Atlantic (Fawcett et al., 2015), the equatorial Pacific (Rafter and Sigman, 2016) and the Southern Ocean (Fripiat et al., 2019), and in-lab culture (Granger et al., 2004, 2010).

    Figure  8.  Schematic of N cycle as inferred from nitrate isotopes in the upper 500 m of the western South China Sea. Depth profiles of nitrate+nitrite concentration, δ15N, δ18O and Δ(15-18) are based on the mean values from this study. The vertical patterns of NH4+ uptake rate and nitrification rate based on isotope tracer assay are considered (Wan et al., 2018). N2 in the air and the Vienna Standard Mean Ocean Water are chosen as the standards for N and O isotope analysis, respectively. UEZ: upper oligotrophic zone; LEZ: lower euphotic zone; UMZ: upper portion of mesopelagic zone.

  • Bai Peng, Yang Jingling, Zhang Shuwen, et al. 2019. Upwelling off the west coast of Hainan Island: sensitivity to wave-mixing. Acta Oceanologica Sinica, 38(11): 11–19. doi: 10.1007/s13131-019-1494-3
    Braman R S, Hendrix S A. 1989. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemi luminescence detection. Analytical Chemistry, 61(24): 2715–2718. doi: 10.1021/ac00199a007
    Buchwald C, Casciotti K L. 2013. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nature Geoscience, 6(4): 308–313. doi: 10.1038/ngeo1745
    Cai Pinghe, Chen Weifang, Dai Minhan, et al. 2008. A high-resolution study of particle export in the southern South China Sea based on 234Th: 238U disequilibrium. Journal of Geophysical Research: Oceans, 113: C04019
    Casciotti K L. 2016a. Nitrite isotopes as tracers of marine N cycle processes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2081): 20150295
    Casciotti K L. 2016b. Nitrogen and oxygen isotopic studies of the marine nitrogen cycle. Annual Review of Marine Science, 8: 379–407. doi: 10.1146/annurev-marine-010213-135052
    Casciotti K L, Buchwald C, Santoro A E, et al. 2011. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment. Methods in Enzymology, 486: 253–280
    Casciotti K L, Sigman D M, Hastings M G, et al. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74(19): 4905–4912. doi: 10.1021/ac020113w
    Chen Yangjun, Bardhan P, Zhao Xiufeng, et al. 2021. Nitrite cycle indicated by dual isotopes in the northern South China Sea. Journal of Geophysical Research: Biogeosciences, 126(7): e2020JG006129
    Chen Yuh-ling Lee, Chen Houng-Yung, Tuo Sing-how, et al. 2008. Seasonal dynamics of new production from Trichodesmium N2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin. Limnology and Oceanography, 53(5): 1705–1721. doi: 10.4319/lo.2008.53.5.1705
    Chen Fajin, Lao Qibin, Zhang Shuwen, et al. 2020. Nitrate sources and biogeochemical processes identified using nitrogen and oxygen isotopes on the eastern coast of Hainan Island. Continental Shelf Research, 207: 104209. doi: 10.1016/j.csr.2020.104209
    Coale K H, Bruland K W. 1987. Oceanic stratified euphotic zone as elucidated by 234Th: 238U disequilibria. Limnology and Oceanography, 32(1): 189–200. doi: 10.4319/lo.1987.32.1.0189
    Craig H, Gordon L. 1964. Deuterium and Oxygen 18 Variations in the Ocean and Marine Atmosphere. Pisa: Laboratorio di Geologia Nucleare, 277–374
    Deman F, Fonseca-Batista D, Roukaerts A, et al. 2021. Nitrate supply routes and impact of internal cycling in the North Atlantic Ocean inferred from nitrate isotopic composition. Global Biogeochemical Cycles, 35(4): e2020GB006887
    Dore J E, Karl D M. 1996. Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at Station ALOHA. Limnology and Oceanography, 41(8): 1619–1628. doi: 10.4319/lo.1996.41.8.1619
    Dore J E, Letelier R M, Church M J, et al. 2008. Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: Historical perspective and recent observations. Progress in Oceanography, 76(1): 2–38. doi: 10.1016/j.pocean.2007.10.002
    Du Chuanjun, Liu Zhiyu, Kao Shuh-Ji, et al. 2017. Diapycnal fluxes of nutrients in an oligotrophic oceanic regime: The South China Sea. Geophysical Research Letters, 44(22): 11510–11518. doi: 10.1002/2017GL074921
    Eppley R W, Peterson B J. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282(5740): 677–680. doi: 10.1038/282677a0
    Fawcett S E, Ward B B, Lomas M W, et al. 2015. Vertical decoupling of nitrate assimilation and nitrification in the Sargasso Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 103: 64–72. doi: 10.1016/j.dsr.2015.05.004
    Fripiat F, Martínez-García A, Fawcett S E, et al. 2019. The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications. Geochimica et Cosmochimica Acta, 247: 261–279. doi: 10.1016/j.gca.2018.12.003
    Granger J, Sigman D M, Needoba J A, et al. 2004. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnology and Oceanography, 49(5): 1763–1773. doi: 10.4319/lo.2004.49.5.1763
    Granger J, Sigman D M, Rohde M M, et al. 2010. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochimica et Cosmochimica Acta, 74(3): 1030–1040. doi: 10.1016/j.gca.2009.10.044
    Kao Shuh-Ji, Yang Jin-Yu Terence, Liu Kon-Kee, et al. 2012. Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea. Global Biogeochemical Cycles, 26(2): GB2033
    Karl D M, Letelier R M, Bidigare R R, et al. 2021. Seasonal-to-decadal scale variability in primary production and particulate matter export at Station ALOHA. Progress in Oceanography, 195: 102563. doi: 10.1016/j.pocean.2021.102563
    Karl D, Letelier R, Tupas L, et al. 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature, 388(6642): 533–538. doi: 10.1038/41474
    Karsh K L, Granger J, Kritee K, et al. 2012. Eukaryotic assimilatory nitrate reductase fractionates N and O isotopes with a ratio near unity. Environmental Science & Technology, 46(11): 5727–5735
    Karsh K L, Trull T W, Lourey M J, et al. 2003. Relationship of nitrogen isotope fractionation to phytoplankton size and iron availability during the Southern Ocean Iron Release Experiment (SOIREE). Limnology and Oceanography, 48(3): 1058–1068. doi: 10.4319/lo.2003.48.3.1058
    Kemeny P C, Weigand M A, Zhang R, et al. 2016. Enzyme-level interconversion of nitrate and nitrite in the fall mixed layer of the Antarctic Ocean. Global Biogeochemical Cycles, 30(7): 1069–1085. doi: 10.1002/2015GB005350
    Lao Qibin, Chen Fajin, Liu Guoqiang, et al. 2019. Isotopic evidence for the shift of nitrate sources and active biological transformation on the western coast of Guangdong Province, South China. Marine Pollution Bulletin, 142: 603–612. doi: 10.1016/j.marpolbul.2019.04.026
    Li Denghui, Zhou Meng, Zhang Zhaoru, et al. 2018. Intrusions of Kuroshio and shelf waters on northern slope of South China Sea in summer 2015. Journal of Ocean University of China, 17(3): 477–486. doi: 10.1007/s11802-018-3384-2
    Liang Wenzhao, Tang Danling, Luo Xin. 2018. Phytoplankton size structure in the western South China Sea under the influence of a ‘jet-eddy system’. Journal of Marine Systems, 187: 82–95. doi: 10.1016/j.jmarsys.2018.07.001
    Liu Kon-Kee, Atkinson L, Quiñones P R, et al. 2010. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. Berlin, Heidelberg: Springer, 423–493
    Loick N, Dippner J, Doan H N, et al. 2007. Pelagic nitrogen dynamics in the Vietnamese upwelling area according to stable nitrogen and carbon isotope data. Deep-Sea Research Part I: Oceanographic Research Papers, 54(4): 596–607. doi: 10.1016/j.dsr.2006.12.009
    Mariotti A, Germon J C, Hubert P, et al. 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil, 62(3): 413–430. doi: 10.1007/BF02374138
    Montoya J P, Carpenter E J, Capone D G. 2002. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnology and Oceanography, 47: 1617–1628
    Moore C M, Mills M M, Arrigo K R, et al. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 6(9): 701–710. doi: 10.1038/ngeo1765
    Needoba J A, Harrison P J. 2004. Influence of low light and a light: Dark cycle on ${{\rm {NO}}_3^-} $ uptake, intracellular ${{\rm {NO}}_3^-} $ , and nitrogen isotope fractionation by marine phytoplankton. Journal of Phycology, 40: 505–516
    Peters B D, Lam P J, Casciotti K L. 2018. Nitrogen and oxygen isotope measurements of nitrate along the US GEOTRACES Eastern Pacific Zonal Transect (GP16) yield insights into nitrate supply, remineralization, and water mass transport. Marine Chemistry, 201: 137–150. doi: 10.1016/j.marchem.2017.09.009
    Rafter P A, DiFiore P J, Sigman D M. 2013. Coupled nitrate nitrogen and oxygen isotopes and organic matter remineralization in the Southern and Pacific Oceans. Journal of Geophysical Research: Oceans, 118(10): 4781–4794. doi: 10.1002/jgrc.20316
    Rafter P A, Sigman D M. 2016. Spatial distribution and temporal variation of nitrate nitrogen and oxygen isotopes in the upper equatorial Pacific Ocean. Limnology and Oceanography, 61(1): 14–31. doi: 10.1002/lno.10152
    Ren Haojia, Chen Yichi, Wang Xingchen T, et al. 2017. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science, 356(6339): 749–752. doi: 10.1126/science.aal3869
    Shang Shaoling, Lee Z, Wei Guomei. 2011. Characterization of MODIS-derived euphotic zone depth: Results for the China Sea. Remote Sensing of Environment, 115(1): 180–186. doi: 10.1016/j.rse.2010.08.016
    Sigman D M, Altabet M A, McCorkle D C, et al. 1999. The δ15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters. Global Biogeochemical Cycles, 13(4): 1149–1166. doi: 10.1029/1999GB900038
    Sigman D M, DiFiore P J, Hain M P, et al. 2009. The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen. Deep-Sea Research Part I: Oceanographic Research Papers, 56(9): 1419–1439. doi: 10.1016/j.dsr.2009.04.007
    Sigman D M, Fripiat F. 2019. Nitrogen isotopes in the ocean. In: Cochran J K, Bokuniewicz H J, Yager P L, eds. Encyclopedia of Ocean Sciences. 3rd ed. Oxford: Academic Press, 263–278
    Sigman D M, Granger J, DiFiore P J, et al. 2005. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Global Biogeochemical Cycles, 19(4): GB4022
    Sigman D M, Hain M P, Haug G H. 2010. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466(7302): 47–55. doi: 10.1038/nature09149
    Stephens B M, Wankel S D, Beman J M, et al. 2020. Euphotic zone nitrification in the California Current Ecosystem. Limnology and Oceanography, 65(4): 790–806. doi: 10.1002/lno.11348
    Voss M, Bombar D, Loick N, et al. 2006. Riverine influence on nitrogen fixation in the upwelling region off Vietnam, South China Sea. Geophysical Research Letters, 33(7): L07604
    Wan Xianhui Sean, Sheng Huaxia, Dai Minhan, et al. 2018. Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean. Nature Communications, 9: 915. doi: 10.1038/s41467-018-03363-0
    Ward B B. 2005. Temporal variability in nitrification rates and related biogeochemical factors in Monterey Bay, California, USA. Marine Ecology Progress Series, 292: 97–109. doi: 10.3354/meps292097
    Wong G T F, Tseng Chun-Mao, Wen Liang-Saw, et al. 2007. Nutrient dynamics and N-anomaly at the SEATS station. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1528–1545
    Wu Jingfeng, Chung Shi-Wei, Wen Liang-Saw, et al. 2003. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochemical Cycles, 17(1): 1008
    Wu Jinhui, Lao Qibin, Chen Fajin, et al. 2021. Water mass processes between the South China Sea and the western Pacific through the Luzon Strait: insights from hydrogen and oxygen Isotopes. Journal of Geophysical Research: Oceans, 126(8): e2021JC017484
    Xiao Hongwei, Xiao Huayun, Luo Li, et al. 2018. Stable carbon and nitrogen isotope compositions of bulk aerosol samples over the South China Sea. Atmospheric Environment, 193: 1–10. doi: 10.1016/j.atmosenv.2018.09.006
    Xu Chao. 2021. Nitrogen and oxygen isotopic compositions of nitrate in the South China Sea and the western North Pacific (in Chinese)[dissertation]. Xiamen: Xiamen University
    Yang Zhi, Chen Jianfang, Chen Min, et al. 2018. Sources and transformations of nitrogen in the South China Sea: insights from nitrogen isotopes. Journal of Oceanography, 74(1): 101–113. doi: 10.1007/s10872-017-0443-z
    Yang Jin-Yu Terence, Kao Shuh-Ji, Dai Minhan, et al. 2017. Examining N cycling in the northern South China Sea from N isotopic signals in nitrate and particulate phases. Journal of Geophysical Research: Biogeosciences, 122(8): 2118–2136. doi: 10.1002/2016JG003618
    Yool A, Martin A P, Fernández C, et al. 2007. The significance of nitrification for oceanic new production. Nature, 447(7147): 999–1002. doi: 10.1038/nature05885
    Zakem E J, Al-Haj A, Church M J, et al. 2018. Ecological control of nitrite in the upper ocean. Nature Communications, 9: 1206. doi: 10.1038/s41467-018-03553-w
    Zhang Run, Chen Min, Yang Qing, et al. 2015. Physical-biological coupling of N2 fixation in the northwestern South China Sea coastal upwelling during summer. Limnology and Oceanography, 60(4): 1411–1425. doi: 10.1002/lno.10111
    Zhang Run, Wang Xingchen T, Ren Haojia, et al. 2020. Dissolved organic nitrogen cycling in the South China Sea from an isotopic perspective. Global Biogeochemical Cycles, 34(12): e2020GB006551
    Zhu Yifan, Liu Jing, Mulholland M R. 2021. Dynamics of ammonium biogeochemistry in an oligotrophic regime in the South China Sea. Marine Chemistry, 237: 104040
  • 加载中
图(8)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  244
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-31
  • 录用日期:  2022-07-12
  • 网络出版日期:  2022-11-08
  • 刊出日期:  2023-01-25

目录

    /

    返回文章
    返回