Simulation of transport mechanism of radium isotopes in aquifer on the southern coast of Laizhou Bay

Yancheng Wang Guangquan Chen Hongjun Yu Xingyong Xu Yinqiao Zou Wenqing Zhao Weitao Han Wenzhe Lyu Zhen Cui Runtian Ding

Yancheng Wang, Guangquan Chen, Hongjun Yu, Xingyong Xu, Yinqiao Zou, Wenqing Zhao, Weitao Han, Wenzhe Lyu, Zhen Cui, Runtian Ding. Simulation of transport mechanism of radium isotopes in aquifer on the southern coast of Laizhou Bay[J]. Acta Oceanologica Sinica, 2023, 42(8): 40-48. doi: 10.1007/s13131-022-2096-z
Citation: Yancheng Wang, Guangquan Chen, Hongjun Yu, Xingyong Xu, Yinqiao Zou, Wenqing Zhao, Weitao Han, Wenzhe Lyu, Zhen Cui, Runtian Ding. Simulation of transport mechanism of radium isotopes in aquifer on the southern coast of Laizhou Bay[J]. Acta Oceanologica Sinica, 2023, 42(8): 40-48. doi: 10.1007/s13131-022-2096-z

doi: 10.1007/s13131-022-2096-z

Simulation of transport mechanism of radium isotopes in aquifer on the southern coast of Laizhou Bay

Funds: The Joint Funds of the National Natural Science Foundation of China under contract Nos U22A20580 and U2106203; the National Natural Science Foundation of China under contract No. 41706067; the Open Project Program of Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources under contract No. 2022108.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of the study area and samples. The blue lines are rivers. TDS: total dissolved solid content.

    Figure  2.  Schematic drawing of the leaching experiment setup.

    Figure  3.  The relationship between the desorption radium activity and Cl.

    Figure  4.  The relationship between the desorption of radium (Ra) isotopes and salinity in different layers. a. 224Ra; b. 226Ra.

    Figure  5.  The relationship between the desorption of Ra isotopes and layers with different salinities. a. 224Ra; b. 226Ra.

    Figure  6.  The relationship between 226Ra and Ca2+ (a), Mg2+ (b), Na+ (c) and Ba2+ (d).

    Figure  7.  Simulation results of Ra isotopes reactive transport model. a. 224Ra; b. 226Ra.

    Table  1.   The 224Ra and 226Ra activities (Bq/m3) leaching experiment results

    SalinityLayer 1Layer 2Layer 3Layer 4Layer 5Mean value
    224Ra226Ra224Ra226Ra224Ra226Ra224Ra226Ra224Ra226Ra224Ra226Ra
    0.13.622.351.371.7726.662.612.322.323.662.137.532.23
    113.165.137.243.226.383.4924.064.268.304.1011.834.04
    347.3216.8126.139.6530.6010.2732.3212.7827.966.2032.8611.14
    10115.7043.14102.9435.23100.7933.97109.3038.6199.4117.33105.6333.65
    20134.8635.52148.8949.47187.9744.14209.9154.63203.9135.39177.1143.83
    30179.7442.81173.6855.10224.7249.32270.2474.99245.8640.06218.8552.46
    下载: 导出CSV

    Table  2.   The 224Ra and 226Ra results of field data

    Sample
    code
    LatitudeLongitudeSalinityGroup
    type
    224Ra/
    (Bq·m−3)
    226Ra/
    (Bq·m−3)
    YW1-136.926°N119.156°E10.6460.101.15
    YW1-236.907°N119.154°E9.9454.288.93
    YW1-336.895°N119.156°E4.3311.115.72
    YW1-436.872°N119.156°E0.418.266.68
    YW1-536.859°N119.157°E0.5111.175.67
    YW1-636.830°N119.158°E0.4112.431.30
    YW1-736.815°N119.158°E0.419.771.51
    YW1-836.808°N119.164°E1.2212.541.34
    YW2-137.045°N119.477°E26.15403.6036.40
    YW2-236.983°N119.469°E14.94578.5113.92
    YW2-336.948°N119.470°E4.9331.086.32
    YW2-436.930°N119.470°E13.04228.033.01
    YW2-536.910°N119.469°E1.1243.676.64
    YW2-636.885°N119.469°E0.218.592.06
    YW2-736.874°N119.458°E0.3114.852.87
    YW2-836.802°N119.470°E0.2113.713.78
    下载: 导出CSV

    Table  3.   Desorption experiments with different grain sizes

    SalinityGrain sizes/μmConclusionsReferences
    35<63 710Small grain size has strong adsorption capacity and desorption is difficult.Beck and Cochran (2013)
    28>2000, 2000−1000,
    1000−500, 500−250,
    250−125, <125
    The desorption capacity is higher when the average grain size is >2000 μm, the maximum when the average grain size is <125 μm, and the other four grain sizes are similar.Yuan et al. (2014)
    33.90.9, 5.5, 13.6, 43.7, 76.5, 136The desorption capacity decreases with the increase of grain size. But, when the average grain size is 136 μm, the desorption is slightly higher than that of the previous grain size.Luo et al. (2019)
    0.1, 1, 3, 10, 20, 3033.43, 35.07, 40.22, 41.71, 79.88The sediment is abundant without complete desorption, with large grain size and large desorption capacity.this study
    下载: 导出CSV
  • Beck A J, Cochran M A. 2013. Controls on solid-solution partitioning of radium in saturated marine sands. Marine Chemistry, 156: 38–48. doi: 10.1016/j.marchem.2013.01.008
    Beck A J, Rapaglia J P, Cochran J K, et al. 2007. Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater. Marine Chemistry, 106(3–4): 419–441
    Beneš P, Strejc P, Lukavec Z. 1984. Interaction of radium with freshwater sediments and their mineral components. I. Ferric hydroxide and quartz. Journal of Radioanalytical and Nuclear Chemistry, 82(2): 275–285. doi: 10.1007/BF02037050
    Burnett W C, Bokuniewicz H, Huettel M, et al. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1–2): 3–33
    Burnett W C, Taniguchi M, Oberdorfer J. 2001. Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research, 46(2): 109–116. doi: 10.1016/S1385-1101(01)00075-2
    Cai Pinghe, Shi Xiangming, Moore W S, et al. 2014. 224Ra: 228Th disequilibrium in coastal sediments: Implications for solute transfer across the sediment–water interface. Geochimica et Cosmochimica Acta, 125: 68–84. doi: 10.1016/j.gca.2013.09.029
    Charette M A, Lam P J, Lohan M C, et al. 2016. Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2081): 20160076
    Charette M A, Moore W S, Burnett W C. 2008. Uranium-and thorium-series nuclides as tracers of submarine groundwater discharge. Radioactivity in the Environment, 13: 155–191
    Chen Guangquan, Xiong Guiyao, Lin Jin, et al. 2021. Elucidating the pollution sources and groundwater evolution in typical seawater intrusion areas using hydrochemical and environmental stable isotope technique: A case study for Shandong Province, China. Lithosphere, 2021: 4227303. doi: 10.2113/2021/4227303
    Cho H M, Kim G. 2016. Determining groundwater Ra end-member values for the estimation of the magnitude of submarine groundwater discharge using Ra isotope tracers. Geophysical Research Letters, 43(8): 3865–3871. doi: 10.1002/2016GL068805
    Diego-Feliu M, Rodellas V, Saaltink M W, et al. 2021. New perspectives on the use of 224Ra/228Ra and 222Rn/226Ra activity ratios in groundwater studies. Journal of Hydrology, 596: 126043. doi: 10.1016/j.jhydrol.2021.126043
    Garcia-Orellana J, Rodellas V, Tamborski J, et al. 2021. Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Science Reviews, 220: 103681. doi: 10.1016/j.earscirev.2021.103681
    Gonneea M E, Morris P J, Dulaiova H, et al. 2008. New perspectives on radium behavior within a subterranean estuary. Marine Chemistry, 109(3–4): 250–267
    Gonneea M E, Mulligan A E, Charette M A. 2013. Seasonal cycles in radium and barium within a subterranean estuary: Implications for groundwater derived chemical fluxes to surface waters. Geochimica et Cosmochimica Acta, 119: 164–177. doi: 10.1016/j.gca.2013.05.034
    Hao Xin, Yi Lixin, Li Luxuan, et al. 2022. Distribution coefficient of Ra in groundwater and its determination technique. Geoscience (in Chinese), 36(2): 552–562
    Ivanovich M, Harmon R S. 1992. Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. 2nd ed. Oxford: Clarendon Press; Oxford, New York: Oxford University Press
    Kim G, Ryu J W, Yang H S, et al. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes. Earth and Planetary Science Letters, 237(1–2): 156–166
    Kiro Y, Weinstein Y, Starinsky A, et al. 2013. Groundwater ages and reaction rates during seawater circulation in the Dead Sea aquifer. Geochimica et Cosmochimica Acta, 122: 17–35. doi: 10.1016/j.gca.2013.08.005
    Knauss K G, Ku T L, Moore W S. 1978. Radium and thorium isotopes in the surface waters of the East Pacific and coastal Southern California. Earth and Planetary Science Letters, 39(2): 235–249. doi: 10.1016/0012-821X(78)90199-1
    Krest J M, Harvey J W. 2003. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge. Limnology and Oceanography, 48(1): 290–298. doi: 10.4319/lo.2003.48.1.0290
    Krest J M, Moore W S, Rama. 1999. 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya rivers: indicators of groundwater input. Marine Chemistry, 64(3): 129–152. doi: 10.1016/S0304-4203(98)00070-X
    Krishnaswami S, Graustein W C, Turekian K K, et al. 1982. Radium, thorium and radioactive lead isotopes in groundwaters: Application to the in situ determination of adsorption-desorption rate constants and retardation factors. Water Resources Research, 18(6): 1663–1675. doi: 10.1029/WR018i006p01663
    Li Yuanhui, Mathieu G, Biscaye P, et al. 1977. The flux of 226Ra from estuarine and continental shelf sediments. Earth and Planetary Science Letters, 37(2): 237–241. doi: 10.1016/0012-821X(77)90168-6
    Liu Yi, Jiao J J, Mao Rong, et al. 2019. Spatial characteristics reveal the reactive transport of radium isotopes (224Ra, 223Ra, and 228Ra) in an intertidal aquifer. Water Resources Research, 55(12): 10282–10302. doi: 10.1029/2019WR024849
    Luo Xin, Jiao J J, Moore W S, et al. 2018. Significant chemical fluxes from natural terrestrial groundwater rival anthropogenic and fluvial input in a large-river deltaic estuary. Water Research, 144: 603–615. doi: 10.1016/j.watres.2018.07.004
    Luo Hao, Li Linwei, Wang Jinlong, et al. 2019. The desorption of radium isotopes in river sediments in Qinzhou Bay. Haiyang Xuebao (in Chinese), 41(4): 27–41
    Martin P, Akber R A. 1999. Radium isotopes as indicators of adsorption–desorption interactions and barite formation in groundwater. Journal of Environmental Radioactivity, 46(3): 271–286. doi: 10.1016/S0265-931X(98)00147-7
    Moore W S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380(6575): 612–614. doi: 10.1038/380612a0
    Moore W S. 2000. Ages of continental shelf waters determined from 223Ra and 224Ra. Journal of Geophysical Research: Oceans, 105(C9): 22117–22122. doi: 10.1029/1999JC000289
    Moore W S. 2008. Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting. Marine Chemistry, 109(3–4): 188–197
    Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1): 1321–1329. doi: 10.1029/95JC03139
    Moore W S, Astwood H, Lindstrom C. 1995. Radium isotopes in coastal waters on the Amazon shelf. Geochimica et Cosmochimica Acta, 59(20): 4285–4298. doi: 10.1016/0016-7037(95)00242-R
    Nathwani J S, Phillips C R. 1979. Adsorption of 226Ra by soils in the presence of Ca2+ ions. Specific adsorption (II). Chemosphere, 8(5): 293–299. doi: 10.1016/0045-6535(79)90112-7
    Porcelli D. 2008. Investigating groundwater processes using U- and Th-series nuclides. Radioactivity in the Environment, 13: 105–153
    Rodellas V, Garcia-Orellana J, Masqué P, et al. 2015. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America, 112(13): 3926–3930. doi: 10.1073/pnas.1419049112
    Santos I R, Chen Xiaogang, Lecher A L, et al. 2021. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5): 307–323
    Swarzenski P W, Baskaran M, Rosenbauer R J, et al. 2013. A combined radio- and stable-isotopic study of a California coastal aquifer system. Water, 5(2): 480–504. doi: 10.3390/w5020480
    Szabo Z, dePaul V T, Fischer J M, et al. 2012. Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Applied Geochemistry, 27(3): 729–752. doi: 10.1016/j.apgeochem.2011.11.002
    Tomasky-Holmes G, Valiela I, Charette M A. 2013. Determination of water mass ages using radium isotopes as tracers: implications for phytoplankton dynamics in estuaries. Marine Chemistry, 156: 18–26. doi: 10.1016/j.marchem.2013.02.002
    Vinson D S, Lundy J R, Dwyer G S, et al. 2018. Radium isotope response to aquifer storage and recovery in a sandstone aquifer. Applied Geochemistry, 91: 54–63. doi: 10.1016/j.apgeochem.2018.01.006
    Vinson D S, Tagma T, Bouchaou L, et al. 2013. Occurrence and mobilization of radium in fresh to saline coastal groundwater inferred from geochemical and isotopic tracers (Sr, S, O, H, Ra, Rn). Applied Geochemistry, 38: 161–175. doi: 10.1016/j.apgeochem.2013.09.004
    Wang Qidong, Song Jinming, Li Xuegang, et al. 2015. Environmental radionuclides in a coastal wetland of the southern Laizhou Bay, China. Marine Pollution Bulletin, 97(1–2): 506–511
    Webster I T, Hancock G J, Murray A S. 1995. Modelling the effect of salinity on radium desorption from sediments. Geochimica et Cosmochimica Acta, 59(12): 2469–2476. doi: 10.1016/0016-7037(95)00141-7
    Xia Dong, Mi Tiezhu, Zhen Yu, et al. 2016. Simulating the process of radium desorption from coastal aquifer sediments by seawater. Marine Environmental Science (in Chinese), 35(1): 63–67
    Xu Bochao. 2008. Study of the chronology of aquifer strata and the geochemical behavior of uranium of the underground brine along the southern coast of Laizhou Bay (in Chinese) [dissertation]. Qingdao: Ocean University of China
    Yuan Xiaojie, Guo Zhanrong, Liu Jie, et al. 2014. Characteristics of radium desorption from sediments in the salt water environment. Acta Geoscientica Sinica (in Chinese), 35(5): 582–588
    Zhang Yongxiang, Xue Yuqun, Chen Honghan. 1996. Deposit seawater characteristics in the Strata and its formation environment in the south coastal plain of Laizhou Bay since late Pleistocene. Haiyang Xuebao (in Chinese), 18(6): 61–68
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  142
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-16
  • 录用日期:  2023-03-11
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回