An assessment of the subduction rate in the CMIP6 historical experiment

Shan Liu Xueyi Jing Xingrong Chen Huijun Wang

Shan Liu, Xueyi Jing, Xingrong Chen, Huijun Wang. An assessment of the subduction rate in the CMIP6 historical experiment[J]. Acta Oceanologica Sinica, 2023, 42(1): 44-60. doi: 10.1007/s13131-022-2108-z
Citation: Shan Liu, Xueyi Jing, Xingrong Chen, Huijun Wang. An assessment of the subduction rate in the CMIP6 historical experiment[J]. Acta Oceanologica Sinica, 2023, 42(1): 44-60. doi: 10.1007/s13131-022-2108-z

doi: 10.1007/s13131-022-2108-z

An assessment of the subduction rate in the CMIP6 historical experiment

Funds: The National Natural Science Foundation of China under contract Nos 42192561 and 41605052; the National Key Research and Development Program of China under contract No. 2020YFA0608804.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The mixed layer depth for Argo in spring (a), summer (b), autumn (c) and winter (d); e−h are the same as a−d, but for Simple Ocean Data Assimilation results; i−l are the results for multi-model ensemble mean.

    Figure  2.  Taylor diagram for mixed layer depth in four seasons for the 21 Coupled Model Intercomparison Project Phase 6 (CMIP6) models and multi-model ensemble mean (MME) with Argo (a) and Simple Ocean Data Assimilation (SODA) (b) data.

    Figure  3.  Zonal averaged mixed layer depth (MLD) during the spring (a), summer (b), autumn (c) and winter (d) for the Coupled Model Intercomparison Project Phase 6 (CMIP6) models, Simple Ocean Data Assimilation (SODA) data, multi-model ensemble mean (MME), as well as the reference datasets.

    Figure  4.  Subduction rate climatology of Argo data (a) and Simple Ocean Data Assimilation (SODA) data (b).

    Figure  5.  Subduction rate climatology for each Coupled Model Intercomparison Project Phase 6 (CMIP6) model.

    Figure  6.  Taylor diagram of subduction rate climatology simulation of the 21 Coupled Model Intercomparison Project Phase 6 (CMIP6) models and the multi-model ensemble mean (MME) with Argo (a) and Simple Ocean Data Assimilation (SODA) (b) data.

    Figure  7.  Subduction rate climatology of the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model ensemble mean (MME) (a), the bias relative to Argo (b) and the bias relative to Simple Ocean Data Assimilation (SODA) (c).

    Figure  8.  Vertical pumping (a) and lateral induction (b) climatology of Argo; c and d are the corresponding results of Simple Ocean Data Assimilation (SODA) data. The value in the top right-hand corner represents its contribution to subduction rate.

    Figure  9.  Vertical pumping climatology for each Coupled Model Intercomparison Project Phase 6 (CMIP6) model. The value in the top right-hand corner represents its corresponding contribution to subduction rate.

    Figure  10.  Lateral induction climatology for each Coupled Model Intercomparison Project Phase 6 (CMIP6) model. The value in the top right-hand corner represents its corresponding contribution to subduction rate.

    Figure  11.  Taylor diagrams for vertical pumping and lateral induction simulations for the 21 Coupled Model Intercomparison Project Phase 6 (CMIP6) models and multi-model ensemble mean (MME) with Argo (a) and Simple Ocean Data Assimilation (SODA) (b) data.

    Figure  12.  The global mean subduction rate time anomaly of the Simple Ocean Data Assimilation (SODA) data, ORA-S3 data, Coupled Model Intercomparison Project Phase 6 (CMIP6) models and multi-model ensemble mean (MME).

    Figure  13.  Spatial distribution of the linear trend of the subduction rate from the Simple Ocean Data Assimilation (SODA) data (a) and multi-model ensemble mean (MME) (b). The black dots indicate that the area passed the 95% significance test.

    Figure  14.  The subduction rate time trend distributions of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models. The black dots indicate that the area passed the 95% significance test.

    Figure  15.  The latitude bands analyzed in the Antarctic Circumpolar Current (ACC) region (a), the black bold lines indicate the boundaries; time variation curves of the subduction rate, vertical pumping term and lateral induction term in the ACC region for the Simple Ocean Data Assimilation (SODA) data (b).

    Figure  16.  Time variation of the lateral induction term (TVLI) for the Simple Ocean Data Assimilation (SODA) data and Coupled Model Intercomparison Project Phase 6 (CMIP6) models. The solid line shows the SODA data results, the dotted line shows the model simulation results, and the value in the upper left corner is the linear slope of the model result.

    Figure  17.  Abnormal time variation curves of the zonal velocity at the bottom mixed layer (BML) (a), the meridional velocity at the BML (b), the zonal gradient of the mixed layer depth (MLD) (c) and the meridional gradient of the MLD for the Simple Ocean Data Assimilation (SODA) data, Coupled Model Intercomparison Project Phase 6 (CMIP6) models and multi-model ensemble mean (MME) in the Antarctic Circumpolar Current (ACC) region during September (d).

    Table  1.   Details of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models

    No.ModelInstitutionOcean modulesOcean resolution
    1CAMS-CSM1-0BCC-CAMS/ChinaMOM4200×320
    2CanESM5CCCMA/CanadaNEMO3.4.1290×361
    3CAS-ESM2-0CAS/ChinaLICOM2.0196×362
    4CESM2NCAR/USAPOP2384×320
    5CESM2-FV2NCAR/USAPOP2384×320
    6CESM2-WACCMNCAR/USAPOP2384×320
    7CESM2-WACCM-FV2NCAR/USAPOP2384×320
    8CIESMTHU/ChinaCIESM-OM560×720
    9E3SM-1-0LLNL/USAMPAS-Oceanv6.0235 160 cells and 714 274 edges
    10E3SM-1-1LLNL/USAMPAS-Oceanv6.0235 160 cells and 714 274 edges
    11EC-Earth3-VegAEMET/SpainNEMO3.6292×362
    12FGOALS-f3-LCAS/ChinaLICOM3.0218×360
    13FGOALS-g3CAS/ChinaLICOM3.0218×360
    14FIO-ESM-2-0FIO-QNLM/ChinaPOP2-W384×320
    15GISS-E2-1-GGISS/USAGISS Ocean180×360
    16IPSL-CM6A-LRIPSL/FranceNMEO-OPA332×362
    17MCM-UA-1-0UA/USAMOM1.080×192
    18MPI-ESM1-2-LRMPI-M/GermanyMPIOM1.63220×256
    19NESM3NUIST/ChinaNEMOv3.4362×384
    20NorESM2-LMNCC/NorwayMICOM384×360
    21SAM0-UNICONSNU/KoreaPOP2384×320
    下载: 导出CSV
  • Bates N R, Pequignet A C, Johnson R J, et al. 2002. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature, 420(6915): 489–493. doi: 10.1038/nature01253
    Chen Xingrong, Liu Shan, Cao Yi, et al. 2018. Potential effects of subduction rate in the key ocean on global warming hiatus. Acta Oceanologica Sinica, 37(3): 63–68. doi: 10.1007/s13131-017-1130-z
    Chen Ju, Qu Tangdong, Sasaki Y N, et al. 2010. Anti-correlated variability in subduction rate of the western and eastern North Pacific Oceans identified by an eddy-resolving ocean GCM. Geophysical Research Letters, 37(23): L23608. doi: 10.1029/2010GL045239
    Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958. doi: 10.5194/gmd-9-1937-2016
    Gao Libao, Rintoul S R, Yu Weidong. 2018. Recent wind-driven change in subantarctic mode water and its impact on ocean heat storage. Nature Climate Change, 8: 58–63. doi: 10.1038/s41558-017-0022-8
    Giese B S, Ray S. 2011. El Niño variability in simple ocean data assimilation (SODA), 1871–2008. Journal of Geophysical Research: Oceans, 116(C2): C02024. doi: 10.1029/2010JC006695
    Gu Daifang, Philander S G H. 1997. Interdecadal climate fluctuations that depend on exchanges between the Tropics and Extratropics. Science, 275(5301): 805–807. doi: 10.1126/science.275.5301.805
    Herraiz-Borreguero L, Rintoul S R. 2010. Subantarctic mode water variability influenced by mesoscale eddies south of Tasmania. Journal of Geophysical Research: Oceans, 115(C4): C04004. doi: 10.1029/2008JC005146
    Hong Yu, Du Yan, Xia Xingyue, et al. 2021. Subantarctic mode water and its long-term change in CMIP6 models. Journal of Climate, 34(23): 9385–9400. doi: 10.1175/JCLI-D-21-0133.1
    Huang Ruixin, Qiu Bo. 1994. Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. Journal of Physical Oceanography, 24(7): 1608–1622. doi: 10.1175/1520-0485(1994)024<1608:TDSOTW>2.0.CO;2
    Kelley M, Schmidt G A, Nazarenko L S, et al. 2020. GISS-E2.1: configurations and climatology. Journal of Advances in Modeling Earth Systems, 12(8): e2019MS002025. doi: 10.1029/2019MS002025
    Kubokawa A. 1999. Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. Journal of Physical Oceanography, 29(6): 1314–1333. doi: 10.1175/1520-0485(1999)029<1314:VTSABA>2.0.CO;2
    Ladd C, Thompson L A. 2002. Decadal variability of North Pacific Central Mode Water. Journal of Physical Oceanography, 32(10): 2870–2881. doi: 10.1175/1520-0485(2002)0322.0.CO;2
    Levitus S. 1982. Climatological Atlas of the World Ocean. Princeton, NJ: NOAA
    Li Guancheng, Cheng Lijing, Zhu Jiang, et al. 2020. Increasing ocean stratification over the past half-century. Nature Climate Change, 10(12): 1116–1123. doi: 10.1038/s41558-020-00918-2
    Liu Zhengyu, Huang Boyin. 1998. Why is there a tritium maximum in the central equatorial Pacific thermocline?. Journal of Physical Oceanography, 28(7): 1527–1533. doi: 10.1175/1520-0485(1998)028<1527:WITATM>2.0.CO;2
    Liu Lingling, Huang Ruixin. 2012. The global subduction/obduction rates: Their interannual and decadal variability. Journal of Climate, 25(4): 1096–1115. doi: 10.1175/2011JCLI4228.1
    Liu Lingling, Wang Fan, Huang Ruixin. 2011. Enhancement of subduction/obduction due to hurricane-induced mixed layer deepening. Deep-Sea Research Part I: Oceanographic Research Papers, 58(6): 658–667. doi: 10.1016/j.dsr.2011.04.003
    Liu Chengyan, Wu Lixin. 2012. An intensification trend of South Pacific Mode Water subduction rates over the 20th century. Journal of Geophysical Research: Oceans, 117(C7): C07009. doi: 10.1029/2011JC007755
    Liu Cong, Xu Lixiao, Xie Shangping, et al. 2019. Effects of anticyclonic eddies on the multicore structure of the North Pacific subtropical mode water based on Argo observations. Journal of Geophysical Research: Oceans, 124(11): 8400–8413. doi: 10.1029/2019JC015631
    Luo Yiyong, Liu Qinyu, Rothstein L M. 2009. Simulated response of North Pacific mode waters to global warming. Geophysical Research Letters, 36(23): L23609. doi: 10.1029/2009GL040906
    Luo Yiyong, Liu Qinyu, Rothstein L M. 2011. Increase of South Pacific eastern subtropical mode water under global warming. Geophysical Research Letters, 38(1): L01601. doi: 10.1029/2010GL045878
    Ma Jie, Lan Jian. 2017. Interannual variability of Indian Ocean subtropical mode water subduction rate. Climate Dynamics, 48(11): 4093–4107. doi: 10.1007/s00382-016-3322-1
    McPhaden M J, Zhang Dongxiao. 2002. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415(6872): 603–608. doi: 10.1038/415603a
    Oka E, Qiu Bo. 2012. Progress of North Pacific mode water research in the past decade. Journal of Oceanography, 68(1): 5–20. doi: 10.1007/s10872-011-0032-5
    Oka E, Suga T. 2005. Differential formation and circulation of North Pacific central mode water. Journal of Physical Oceanography, 35(11): 1997–2011. doi: 10.1175/JPO2811.1
    Palter J B, Lozier M S, Barber R T. 2005. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature, 437(7059): 687–692. doi: 10.1038/nature03969
    Qiu Zishan, Wei Zexun, Nie Xunwei, et al. 2021. Southeast Indian Subantarctic Mode water in the CMIP6 coupled models. Journal of Geophysical Research: Oceans, 126(7): e2020JC016872. doi: 10.1029/2020JC016872
    Qu Tangdong, Chen Ju. 2009. A North Pacific decadal variability in subduction rate. Geophysical Research Letters, 36(22): L22602. doi: 10.1029/2009GL040914
    Qu Tangdong, Xie Shangping, Mitsudera H, et al. 2002. Subduction of the North Pacific mode waters in a global high-resolution GCM. Journal of Physical Oceanography, 32(3): 746–763. doi: 10.1175/1520-0485(2002)032<0746:SOTNPM>2.0.CO;2
    Sallée J B, Shuckburgh E, Bruneau N, et al. 2013a. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118(4): 1830–1844. doi: 10.1002/jgrc.20135
    Sallée J B, Shuckburgh E, Bruneau N, et al. 2013b. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118(4): 1845–1862. doi: 10.1002/jgrc.20157
    Suga T, Aoki Y, Saito H, et al. 2008. Ventilation of the North Pacific subtropical pycnocline and mode water formation. Progress in Oceanography, 77(4): 285–297. doi: 10.1016/j.pocean.2006.12.005
    Suga T, Hanawa K. 1995. The subtropical mode water circulation in the North Pacific. Journal of Physical Oceanography, 25(5): 958–970. doi: 10.1175/1520-0485(1995)025<0958:TSMWCI>2.0.CO;2
    Toyama K, Iwasaki A, Suga T. 2015. Interannual variation of annual subduction rate in the North Pacific estimated from a gridded Argo product. Journal of Physical Oceanography, 45(9): 2276–2293. doi: 10.1175/JPO-D-14-0223.1
    Xia Xingxue, Xu Lixiao, Xie Shangping, et al. 2021. Fast and slow responses of the Subantarctic Mode Water in the South Indian Ocean to global warming in CMIP5 extended RCP4.5 simulations. Climate Dynamics, 56(9): 3157–3171. doi: 10.1007/s00382-021-05635-w
    Xu Lixiao, Li Peiliang, Xie Shangping, et al. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7: 10505. doi: 10.1038/ncomms10505
    Xu Lixiao, Xie Shangping, Jing Zhao, et al. 2017. Observing subsurface changes of two anticyclonic eddies passing over the Izu-Ogasawara Ridge. Geophysical Research Letters, 44(4): 1857–1865. doi: 10.1002/2016GL072163
    Xu Lixiao, Xie Shangping, McClean J L, et al. 2014. Mesoscale eddy effects on the subduction of North Pacific mode waters. Journal of Geophysical Research: Oceans, 119(8): 4867–4886. doi: 10.1002/2014JC009861
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  104
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 录用日期:  2022-09-13
  • 网络出版日期:  2022-12-21
  • 刊出日期:  2023-01-25

目录

    /

    返回文章
    返回