Spatial and temporal variation process of seabed dynamic response induced by the internal solitary wave

Zhuangcai Tian Lei Jia Naili Hu Susheng Wang Mingwei Zhang Guoqing Zhou

Zhuangcai Tian, Lei Jia, Naili Hu, Susheng Wang, Mingwei Zhang, Guoqing Zhou. Spatial and temporal variation process of seabed dynamic response induced by the internal solitary wave[J]. Acta Oceanologica Sinica, 2023, 42(2): 142-149. doi: 10.1007/s13131-022-2112-3
Citation: Zhuangcai Tian, Lei Jia, Naili Hu, Susheng Wang, Mingwei Zhang, Guoqing Zhou. Spatial and temporal variation process of seabed dynamic response induced by the internal solitary wave[J]. Acta Oceanologica Sinica, 2023, 42(2): 142-149. doi: 10.1007/s13131-022-2112-3

doi: 10.1007/s13131-022-2112-3

Spatial and temporal variation process of seabed dynamic response induced by the internal solitary wave

Funds: The Natural Science Foundation of Jiangsu Province under contract No. BK20210527; the Open Research Fund of Key Laboratory of Coastal Science and Integrated Management, Ministry of Natural Resources under contract No. 2021COSIMQ002; the National Natural Science Foundation of China under contract No. 42107158.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Schematic diagram of the simulation system for seabed pore water pressure induced by internal solitary wave.

    Figure  2.  Comparison of present simulation and results of the literature (Qiao et al., 2016). Symbols were results of the present paper, solid lines were results of the literature (Qiao et al., 2016).

    Figure  3.  Vertical distribution of excess pore pressure in sandy silt seabed under the action of ISW1. a. T−0.2; b. T0; c. T0.1; d. T0.2; e. T0.5.

    Figure  4.  Horizontal distribution of excess pore water pressure under the action of ISW1 at t=T0. a. Sand silt seabed; b. fine sand seabed; c. clayey silt seabed; d. summary of peak values in each curve.

    Figure  5.  Vertical distribution of excess pore water pressure in sandy silt seabed under different ISWs. a. T–0.2,; b. T0; c. T0.1; d. T0.2; e. T0.5.

    Figure  6.  Horizontal distribution of excess pore water pressure in sandy silt seabed under different ISWs. a. z=–0.2 m; b. z=–0.4 m; c. z=–0.6 m; d. z=–0.8 m; e. z=–1.0 m.

    Figure  7.  The effects of porosity (n), shear modulus (G), permeability (k) and Poisson’s ratio (μ) on the dissipation and phase lag of excess pore water pressure (peak value) induced by ISW1. a. Various porosity; b. various shear modulus; c. various permeability; d. various Poisson’s ratio.

    Figure  8.  The penetration depth in various sediment induced by ISW1 at t=T−0.2, T0, T0.1, T0.2 and T0.5.

    Table  1.   Parameters of internal solitary wave (ISW) in the northern South China Sea

    ParametersUpper fluid thickness
    h1/m
    Lower fluid thickness
    h2/m
    Upper fluid density
    $ {\rho }_{1} $/(kg·m−3)
    Lower fluid density
    $ {\rho }_{2} $/(kg·m−3)
    Amplitude
    A/m
    Period
    T/s
    ISW11122151 022.51 025.580.91 440
    ISW2403001 022.51 025.5165840
    下载: 导出CSV

    Table  2.   Surface layer sediment properties of the northern slope of the South China Sea

    TypeShear modulus
    G/Pa
    Permeability
    k/(m·s−1)
    Poisson’s ratio/
    μm
    Pore water bulk density
    γw/(kN·m−3)
    Porosity nSaturation Sr
    Fine sand1×1075×10−60.3310 2600.5411 or 0.98, in present study Sr=0.98
    Sandy silt1×1071×10−60.3110 2600.7171 or 0.98, in present study Sr=0.98
    Clayey silt1.48×1073.47×10−70.3110 2600.7531 or 0.98, in present study Sr=0.98
    下载: 导出CSV
  • Alford M H, Peacock T, Mackinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65–69. doi: 10.1038/nature14399
    Chen Chengyi, Hsu J R C. 2005. Interaction between internal waves and a permeable seabed. Ocean Engineering, 32(5–6): 587–621
    Chen Shanshan, Sun Yunbao, Wu Shiguo. 2012. Sea bottom landslide in the Shenhu area on the north margin of South China sea and triggering mechanisms. Marine Geology Letters (in Chinese), 28(6): 40–45
    Duda T F, Lynch J F, Irish J D, et al. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1105–1130. doi: 10.1109/JOE.2004.836998
    Guo Xingsen, Nian Tingkai, Wang Dong, et al. 2022a. Evaluation of undrained shear strength of surficial marine clays using ball penetration-based CFD modelling. Acta Geotechnica, 17(5): 1627–1643. doi: 10.1007/s11440-021-01347-x
    Guo Xingsen, Nian Tingkai, Zhao Wei, et al. 2022b. Centrifuge experiment on the penetration test for evaluating undrained strength of deep-sea surface soils. International Journal of Mining Science and Technology, 32(2): 363–373. doi: 10.1016/j.ijmst.2021.12.005
    Hsu J R C, Jeng D S, Tsai C P. 1993. Short-crested wave-induced soil response in a porous seabed of infinite thickness. International Journal for Numerical and Analytical Methods in Geomechanics, 17(8): 55–576
    Huang Xiaodong, Chen Zhaohui, Zhao Wei, et al. 2016. An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6(1): 30041. doi: 10.1038/srep30041
    Jackson C. 2007. Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Oceans, 112(C11): C11012. doi: 10.1029/2007JC004220
    Jeng D S, Cha D H. 2003. Effects of dynamic soil behavior and wave non-linearity on the wave-induced pore pressure and effective stresses in porous seabed. Ocean Engineering, 30(16): 2065–2089. doi: 10.1016/S0029-8018(03)00070-2
    Lü Haibin, Liu Yujun, Chen Xiaokang, et al. 2021. Effects of westward shoaling pycnocline on characteristics and energetics of internal solitary wave in the Luzon Strait by numerical simulations. Acta Oceanologica Sinica, 40(5): 20–29. doi: 10.1007/s13131-021-1808-0
    Lu Bo. 1996. Study on sediments and their physical properties in Dongsha Islands. Haiyang Xuebao (in Chinese), 18(6): 82–89
    Luan Xiwu, Sun Dianqi, Peng Xuechao. 2012. Genesis of the nanbeiwei shoal on the shelf of the northern South China Sea and its petroliferous significance. Haiyang Xuebao (in Chinese), 86(4): 626–640
    Olsthoorn J, Stastna M, Soontiens N. 2012. Fluid circulation and seepage in lake sediment due to propagating and trapped internal waves. Water Resources Research, 48(11): W11520
    Qi Wengang, Li Changfei, Jeng Dongsheng, et al. 2019. Combined wave-current induced excess pore-pressure in a sandy seabed: Flume observations and comparisons with theoretical models. Coastal Engineering, 147: 89–98. doi: 10.1016/j.coastaleng.2019.02.006
    Qiao Luzheng, Guo Xiujun, Tian Zhuangcai, et al. 2016. Analysis on internal solitary wave-induced dynamic response characteristics of surface sediments in the northern South China Sea. Chinese Journal of Underground Space and Engineering (in Chinese), 12(S2): 604–611
    Qiao Luzheng, Guo Xiujun, Tian Zhuangcai, et al. 2018. Experimental analysis of pore pressure characteristics of slope sediments by shoaling internal solitary waves. Haiyang Xuebao (in Chinese), 40(1): 68–76
    Rivera-Rosario G A, Diamessis P J, Jenkins J T. 2017. Bed failure induced by internal solitary waves. Journal of Geophysical Research: Oceans, 122(7): 5468–5485. doi: 10.1002/2017JC012935
    Rong Fu, Liao Chencong, Tong Dagui, et al. 2019. Analysis of wave-induced liquefaction of seabed with variation in permeability anisotropy. Journal of Shanghai Jiao Tong University (in Chinese), 53(1): 93–99
    Su Yuxi, Qiao Luzheng, Guo Xiujun, et al. 2017. Analysis of internal solitary wave-induced seabed stability of sediments in the northern South China Sea. Geotechnical Investigation & Surveying, 45(11): 30–36
    Thomas J A, Lerczak J A, Moum J N. 2016. Horizontal variability of high-frequency nonlinear internal waves in Massachusetts Bay detected by an array of seafloor pressure sensors. Journal of Geophysical Research: Oceans, 121(8): 5587–5607. doi: 10.1002/2016JC011866
    Tian Zhuangcai, Chen Tian, Yu Le, et al. 2019a. Penetration depth of the dynamic response of seabed induced by internal solitary waves. Applied Ocean Research, 90: 101867. doi: 10.1016/j.apor.2019.101867
    Tian Zhuangcai, Jia Yonggang, Chen Jiangxin, et al. 2021a. Internal solitary waves induced deep-water nepheloid layers and seafloor geomorphic changes on the continental slope of the northern South China Sea. Physics of Fluids, 33(5): 053312. doi: 10.1063/5.0045124
    Tian Zhuangcai, Jia Yonggang, Du Qizhi, et al. 2021b. Shearing stress of shoaling internal solitary waves over the slope. Ocean Engineering, 241: 110046. doi: 10.1016/j.oceaneng.2021.110046
    Tian Zhuangcai, Jia Yonggang, Zhang Shaotong, et al. 2019b. Bottom and intermediate nepheloid layer induced by shoaling internal solitary waves: impacts of the angle of the wave group velocity vector and slope gradients. Journal of Geophysical Research: Oceans, 124(8): 5686–5699. doi: 10.1029/2018JC014721
    Tian Zhuangcai, Liu C, Ren Z, et al. 2022. Impact of seepage flow on sediment resuspension by internal solitary waves: parameterization and mechanism. Journal of Oceanology and Limnology,
    Tian Zhuangcai, Zhang Shaotong, Guo Xiujun, et al. 2019c. Experimental investigation of sediment dynamics in response to breaking high-frequency internal solitary wave packets over a steep slope. Journal of Marine Systems, 199: 103191
    Williams S J, Jeng D S. 2007. The effects of a porous-elastic seabed on interfacial wave propagation. Ocean Engineering, 34(13): 1818–1831. doi: 10.1016/j.oceaneng.2007.02.002
    Zhang Xudong, Zhang Jie, Meng Junmin, et al. 2020. Observation of internal waves with OLCI and SRAL on board Sentinel-3. Acta Oceanologica Sinica, 39(3): 56–62. doi: 10.1007/s13131-019-1510-7
    Zhao Hongyi, Jeng Dongsheng, Zhang Huijie, et al. 2016. 2-D integrated numerical modeling for the potential of solitary wave-induced residual liquefaction over a sloping porous seabed. Journal of Ocean Engineering and Marine Energy, 2(1): 1–18. doi: 10.1007/s40722-015-0033-3
    Zhou Qingjie, Li Xishuang, Liu Lejun, et al. 2020. Physical properties of the seabed inversed based on Chirp data and the Biot-Stoll model in the northern continental slope of the South China Sea. Haiyang Xuebao (in Chinese), 42(3): 72–82
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  155
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 录用日期:  2022-07-18
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回