Dramatical hydro-sedimentary changes induced by bamboo fences over mangrove tidal flat of the largest delta in Beibu Gulf, southwestern China

Zuming Huang Zhijun Dai Riming Wang Xiaoyan Zhou Wenhong Pang Jiejun Luo Bingbin Feng Baoqing Hu

Zuming Huang, Zhijun Dai, Riming Wang, Xiaoyan Zhou, Wenhong Pang, Jiejun Luo, Bingbin Feng, Baoqing Hu. Dramatical hydro-sedimentary changes induced by bamboo fences over mangrove tidal flat of the largest delta in Beibu Gulf, southwestern China[J]. Acta Oceanologica Sinica, 2023, 42(7): 103-115. doi: 10.1007/s13131-022-2117-y
Citation: Zuming Huang, Zhijun Dai, Riming Wang, Xiaoyan Zhou, Wenhong Pang, Jiejun Luo, Bingbin Feng, Baoqing Hu. Dramatical hydro-sedimentary changes induced by bamboo fences over mangrove tidal flat of the largest delta in Beibu Gulf, southwestern China[J]. Acta Oceanologica Sinica, 2023, 42(7): 103-115. doi: 10.1007/s13131-022-2117-y

doi: 10.1007/s13131-022-2117-y

Dramatical hydro-sedimentary changes induced by bamboo fences over mangrove tidal flat of the largest delta in Beibu Gulf, southwestern China

Funds: The National Natural Science Key Foundation of China under contract No. 41930537; the Key Research and Development Plan of Guangxi under contract No. AB21076016; the Marine Science Program for Guangxi First-Class Discipline, Beibu Gulf University; the China Postdoctoral Science Foundation under contract No. 2022M721150.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Study area and instrument deployment. a. The location of Beibu Gulf; b. the location of Nanliu Delta and Qixing Island; c. the study area of Qixing Island with the bamboo fences, hydro-sedimentary instruments and GPS-RTK profile deployment; d. the parameters of bamboo strip; e. field pictures of instrument deployment in March and November. ADV: Acoustic Doppler Velocimeter; OBS-3A: Optical Backscattering Sensor; ASM: Argus Surface Meter; CTD: conductivity, temperture, depth; HR: high resolution.

    Figure  2.  Energy spectrum of velocity fluctuations (u, v, w) observed by Acoustic Doppler Velocimeter. a and d at the flood peak period in March and November; b and e at the slack water period in March and November; c and f at the ebb peak period in March and November.

    Figure  3.  Fitting curves between turbidity value and suspended sediment concentration (SSC) of the water samples for the stations with turbidity measurement. NTU is the unit of turbidity.

    Figure  4.  Time series of a, e and i water depth h; b, f and j mean horizontal flow velocity Um; c, g and k mean direction of the flow Dc; d, h and l mean horizontal velocity perpendicular to the bamboo fences Upb at normal area and bamboo-inserted area in March and November, respectively. Stations A3, S3 and S4 were between the bamboo fences. T1–T4 refer to the first tide to the fourth tide in March and November.

    Figure  5.  Time series of suspended sediment concentration (SSC) at bamboo area in November. Stations S3 and S4 are between the bamboo fences.

    Figure  6.  Changes of elevation and siltation thickness of tidal flat profiles P1 and P3 at normal area, P2 at bamboo-inserted area offshore distance for 9 months.

    Figure  7.  Topographic slope change along the profile in November.

    Figure  8.  Time series of velocity Upb attenuation rate r during T1 (a), T2 (b), T3 (c), and T4 (d) in November.

    Figure  9.  Exponential fitting between suspended sediment concentration (SSC) and turbulent kinetic energy (TKE) in bare flat (a), bamboo area (b) and mangrove (c).

    Figure  10.  Time series of turbulent dissipation rate $\varepsilon$ at stations A2 and A4 in March (a) and stations S1, S2, S3, S4 and S6 in November (b).

    Figure  11.  View of bamboo fences contributed to animal habitat (a), sediment deposition (b), and mangrove expansion (c) so far.

    Table  1.   Instrument setup and related obtained parameters during the observation

    InstrumentRelated obtained parameterSample rate/Burst
    (interval)
    Measurement location
    above seabed/cm
    Instrument site
    Time
    ADVturbulent velocity, flow direction, water depth8 Hz/20 min15A2, A48–12, March
    ALECflow velocity, flow direction, water depth15 samples/20 min10A1, A3, B1, B2, B3
    ADVturbulent velocity, flow direction, water depth32 Hz/20 min15S1, S2, S3, S4, S6
    HR-Profileflow velocity, flow direction, water depth4 Hz/20 min0S57–10, November
    OBS-3Aturbidity10 Hz/1 min10S6
    ASM-IVturbidity4 Hz/20 min−10S3, S5
    RBR-CTDturbidity0.1 Hz/consecutive10S1, S2, S4
    下载: 导出CSV

    Table  2.   Hydrodynamic characteristic values for 4 tidal cycles in March

    SiteTideUm-max/(m·s−1)hmax/mRange of Dc/(o)Upb-max/(m·s−1)
    A1flood0.04, 0.06, 0.04, 0.042.00, 2.06, 2.09, 1.92100–3000.05, 0.04, 0.03, 0.03
    ebb0.10, 0.12, 0.11, 0.10180–230−0.05, −0.06, −0.06, −0.05
    A2flood0.33, 0.31, 0.32, 0.302.12, 2.17, 2.21, 2.0430–750.04, 0.04, 0.04, 0.04
    ebb0.28, 0.25, 0.25, 0.26205–240−0.06, −0.07, −0.06, −0.06
    A3flood0.18, 0.17, 0.17, 0.172.23, 2.49, 2.53, 2.3535–3300.14, 0.14, 0.13, 0.16
    ebb0.29, 0.29, 0.31, 0.30170–210−0.15, −0.16, −0.17, −0.15
    A4flood0.55, 0.54, 0.53, 0.522.43, 2.49, 2.53, 2.3540–800.04, 0.04, 0.04, 0.06
    ebb0.39, 0.40, 0.40, 0.39210–220−0.07, −0.07, −0.07, −0.07
    B1flood0.21, 0.23, 0.28, 0.211.95, 2.00, 2.04, 1.87280–3400.18, 0.19, 0.16, 0.17
    ebb0.1, 0.18, 0.18, 0.08110–130−0.1, −0.08, −0.11, −0.08
    B2flood0.24, 0.21, 0.11, 0.142.04, 2.11, 2.14, 1.97230–900.11, 0.17, 0.09, 0.1
    ebb0.13, 0.14, 0.19, 0.17230–290−0.1, −0.09, −0.11, −0.08
    B3flood0.17, 0.16, 0.15, 0.182.22, 2.27, 2.31, 2.14330–400.14, 0.15, 0.14, 0.17
    ebb0.14, 0.29, 0.29, 0.28210–260−0.18, −0.13, −0.19, −0.14
    下载: 导出CSV

    Table  3.   Hydrodynamic characteristic values for 4 tidal cycles in November

    SiteTideUm-max/(m·s−1)h/mRange of Dc/(o)Upb-max/(m·s−1)
    S1flood0.14, 0.19, 0.20, 0.211.85, 1.29, 2.07, 1.7630−900.025, 0.035, 0.04, 0.036
    ebb0.06, 0.05, 0.06, 0.06140−230−0.016, −0.014, −0.018, −0.016
    S2flood0.08, 0.10, 0.09, 0.111.86, 1.37, 2.19, 1.9040−1200.014, 0.009, 0.015, 0.016
    ebb0.09, 0.05, 0.07, 0.06150−250−0.015, −0.003, −0.013, −0.008
    S3flood0.25, 0.26, 0.31, 0.302.10, 1.57, 2.39, 2.0930−700.045, 0.03, 0.049, 0.042
    ebb0.14, 0.16, 0.14, 0.13180−240−0.016, 0.012, −0.016, −0.018
    S4flood0.19, 0.19, 0.25, 0.232.13, 1.62, 2.43, 2.1240−110−0.014, −0.008, −0.031, −0.023
    ebb0.14, 0.16, 0.14, 0.14200−3000.007, 0.003, 0.02, 0.005
    S5flood0.38, 0.4, 0.49, 0.402.22, 1.71, 2.53, 2.2230−800.064, 0.05, 0.07, 0.05
    ebb0.3, 0.27, 0.35, 0.38210−265−0.038, −0.015, −0.05, −0.033
    S6flood0.22, 0.34, 0.49, 0.352.32, 1.80, 2.62, 2.3220−700.064, 0.05, 0.08, 0.067
    ebb0.3, 0.3, 0.31, 0.26215−250−0.056, −0.05, −0.061, −0.047
    下载: 导出CSV

    Table  4.   Variation of suspended sediment flux at bamboo-inserted area in November (unit: kg/(m2·s))

    T1T2T3T4Total
    floodebbfloodebbfloodebbfloodebbnet difference
    S60.055−0.0610.10−0.0740.11−0.150.11−0.0760.46
    S50.027−0.0350.004 4−0.230.000 89−0.0860.028−0.15
    S4−0.0190.010−0.038−0.001 9−0.0720.005 8−0.032−0.003 9 −0.29
    S30.028−0.130.140.110.17−0.130.082−0.092 −0.33
    S20.0059−0.007 90.007 60.000 540.008 5−0.004 30.005 2−0.005 6 0.17
    S10.027−0.0160.059−0.008 90.047−0.0160.037−0.014 −0.089
    下载: 导出CSV
  • Analuddin K, Septiana A, Jamili, et al. 2020. Sea level rise impact on mangrove growth and development in Coral Triangle Ecoregion Southeast, Indonesia. IOP Conference Series: Materials Science and Engineering, 797(1): 012036. doi: 10.1088/1757-899X/797/1/012036
    Atwood T B, Connolly R M, Almahasheer H, et al. 2017. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7): 523–528. doi: 10.1038/nclimate3326
    Brinkman R M. 2006. Wave attenuation in mangrove forests: an investigation through field and theoretical studies [dissertation]. Townsville, Queensland: James Cook University
    Bulleri F, Chapman M G. 2010. The introduction of coastal infrastructure as a driver of change in marine environments. Journal of Applied Ecology, 47(1): 26–35. doi: 10.1111/j.1365-2664.2009.01751.x
    Butt T, Russell P. 1999. Suspended sediment transport mechanisms in high-energy swash. Marine Geology, 161(2–4): 361–375
    Chanson H, Trevethan M, Aoki S I. 2008. Acoustic Doppler velocimetry (ADV) in small estuary: Field experience and signal post-processing. Flow Measurement and Instrumentation, 19(5): 307–313. doi: 10.1016/j.flowmeasinst.2008.03.003
    Christensen D F, Brinkkemper J, Ruessink G, et al. 2018. Field observations of turbulence in the intertidal and shallow subtidal zones. Continental Shelf Research, 170: 21–32. doi: 10.1016/j.csr.2018.10.002
    Dai Zhijun, Zhou Xiaoyan, Wang Jie, et al. 2021. Review and prospect of mangrove tidal flat sedimentary dynamics. Journal of Tropical Oceanography (in Chinese), 40(3): 69–75
    Dao H T, Hofland B, Stive M J F, et al. 2020. Experimental assessment of the flow resistance of coastal wooden fences. Water, 12(7): 1910. doi: 10.3390/w12071910
    Dao T, Stive M J F, Hofland B, et al. 2018. Wave damping due to wooden fences along mangrove coasts. Journal of Coastal Research, 34(6): 1317–1327. doi: 10.2112/JCOASTRES-D-18-00015.1
    FAO. 2020. Global forest resources assessment 2020: Main report. Rome: FAO
    Foster-Martinez M R, Lacy J R, Ferner M C, et al. 2018. Wave attenuation across a tidal marsh in San Francisco Bay. Coastal Engineering, 136: 26–40. doi: 10.1016/j.coastaleng.2018.02.001
    Foti E, Musumeci R E, Stagnitti M. 2020. Coastal defence techniques and climate change: a review. Rendiconti Lincei. Scienze Fisiche e Naturali, 31(1): 123–138
    Friedrichs C T. 2011. Tidal flat morphodynamics. In: Flemming B W, Hansom J D, eds. Treatise on Estuarine and Coastal Science. Volume 3: Estuarine and Coastal Geology and Geomorphology. London: Academic Press, 137–170
    Furukawa K, Wolanski E, Mueller H. 1997. Currents and sediment transport in mangrove forests. Estuarine, Coastal and Shelf Science, 44(3): 301–310
    Gong Zheng, Geng Liang, Lv Yuting, et al. 2017. Mechanisms underlying the dynamic evolution of an open-coast tidal flat-creek system: II: influence of tidal range. Advances in Water Science (in Chinese), 28(2): 231–239
    Goring D G, Nikora V I. 2002. Despiking acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 128(1): 117–126. doi: 10.1061/(ASCE)0733-9429(2002)128:1(117)
    Green M O. 1992. Spectral estimates of bed shear stress at subcritical Reynolds numbers in a tidal boundary layer. Journal of Physical Oceanography, 22(8): 903–917. doi: 10.1175/1520-0485(1992)022<0903:SEOBSS>2.0.CO;2
    Horstman E M, Dohmen-Janssen C M, Bouma T J, et al. 2015. Tidal-scale flow routing and sedimentation in mangrove forests: combining field data and numerical modelling. Geomorphology, 228: 244–262. doi: 10.1016/j.geomorph.2014.08.011
    Horstman E M, Dohmen-Janssen C M, Narra P M F, et al. 2014. Wave attenuation in mangroves: A quantitative approach to field observations. Coastal Engineering, 94: 47–62. doi: 10.1016/j.coastaleng.2014.08.005
    Hu Zhan, Lian Simei, Wei Huaiyu, et al. 2021. Laboratory data on wave propagation through vegetation with following and opposing currents. Earth System Science Data, 13(10): 4987–4999. doi: 10.5194/essd-13-4987-2021
    Hu Zhan, Lian Simei, Zitman T, et al. 2022. Wave breaking induced by opposing currents in submerged vegetation canopies. Water Resources Research, 58(4): e2021WR031121. doi: 10.1029/2021WR031121
    Hu Zhan, Suzuki T, Zitman T, et al. 2014. Laboratory study on wave dissipation by vegetation in combined current–wave flow. Coastal Engineering, 88: 131–142. doi: 10.1016/j.coastaleng.2014.02.009
    Huntley D A. 1988. A modified inertial dissipation method for estimating seabed stresses at low Reynolds numbers, with application to wave/current boundary layer measurements. Journal of Physical Oceanography, 18(2): 339–346. doi: 10.1175/1520-0485(1988)018<0339:AMIDMF>2.0.CO;2
    Li Yanhong, Chen Qinqin, Yu Guoliang. 2007. Advances and prospects in study on siltation promotion and erosion control techniques for beach sediments. Coastal Engineering (in Chinese), 26(4): 27–34
    Liu Zhiyu, Wei Hao. 2007. Estimation to the turbulent kinetic energy dissipation rate and bottom shear stress in the tidal bottom boundary layer of the Yellow Sea. Progress in Natural Science, 17(3): 289–297. doi: 10.1080/10020070612331343260
    Long Chuqi, Dai Zhijun, Wang Riming, et al. 2022. Dynamic changes in mangroves of the largest delta in northern Beibu Gulf, China: Reasons and causes. Forest Ecology and Management, 504: 119855. doi: 10.1016/j.foreco.2021.119855
    Lovelock C E, Cahoon D R, Friess D A, et al. 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526(7574): 559–563. doi: 10.1038/nature15538
    Mai Van C, Ngo A, Mai T, et al. 2021. Bamboo fences as a nature-based measure for coastal wetland protection in Vietnam. Frontiers in Marine Science, 8: 756597. doi: 10.3389/fmars.2021.756597
    Maza M, Adler K, Ramos D, et al. 2017. Velocity and drag evolution from the leading edge of a model mangrove forest. Journal of Geophysical Research: Oceans, 122(11): 9144–9159. doi: 10.1002/2017JC012945
    Mazda Y, Magi M, Kogo M, et al. 1997. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves & Salt Marshes, 1(2): 127–135
    Möller I, Spencer T, French J R, et al. 1999. Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuarine, Coastal & Shelf Science, 49(3): 411–426
    Montgomery J M, Bryan K R, Mullarney J C, et al. 2019. Attenuation of storm surges by coastal mangroves. Geophysical Research Letters, 46(5): 2680–2689. doi: 10.1029/2018GL081636
    Morris R L, Konlechner T M, Ghisalberti M, et al. 2018. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Global Change Biology, 24(5): 1827–1842. doi: 10.1111/gcb.14063
    Murray N J, Phinn S R, Dewitt M, et al. 2019. The global distribution and trajectory of tidal flats. Nature, 565(7738): 222–225. doi: 10.1038/s41586-018-0805-8
    Murray N J, Worthington T A, Bunting P, et al. 2022. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science, 376(6594): 744–749. doi: 10.1126/science.abm9583
    Pang Wenhong, Dai Zhijun, Ma Binbin, et al. 2020. Linkage between turbulent kinetic energy, waves and suspended sediment concentrations in the nearshore zone. Marine Geology, 425: 106190. doi: 10.1016/j.margeo.2020.106190
    Pang Wenhong, Zhou Xiaoyan, Dai Zhijun, et al. 2021. ADV-based investigation on bed level changes over a meso-macro tidal beach. Frontiers in Marine Science, 8: 733923. doi: 10.3389/fmars.2021.733923
    Parsheh M, Sotiropoulos F, Porté-Agel F. 2010. Estimation of power spectra of acoustic-Doppler velocimetry data contaminated with intermittent spikes. Journal of Hydraulic Engineering, 136(6): 368–378. doi: 10.1061/(ASCE)HY.1943-7900.0000202
    Paul M, Bouma T J, Amos C L. 2012. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Marine Ecology Progress Series, 444: 31–41. doi: 10.3354/meps09489
    Santa Barbara-University of California. 2017. Seawalls: Ecological effects of coastal armoring in soft sediment environments. ScienceDaily. https://www.sciencedaily.com/releases/2017/07/170724133156.htm[2022-06-10]
    Shepard F P. 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research, 24(3): 151–158
    Stapleton K R, Huntley D A. 1995. Seabed stress determinations using the inertial dissipation method and the turbulent kinetic energy method. Earth Surface Processes and Landforms, 20(9): 807–815. doi: 10.1002/esp.3290200906
    Stefanon L, Carniello L, D’Alpaos A, et al. 2010. Experimental analysis of tidal network growth and development. Continental Shelf Research, 30(8): 950–962. doi: 10.1016/j.csr.2009.08.018
    Taylor G I. 1938. The spectrum of turbulence. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 164(919): 476–490
    Van Der Stocken T, Carroll D, Menemenlis D, et al. 2019. Global-scale dispersal and connectivity in mangroves. Proceedings of the National Academy of Sciences of the United States of America, 116(3): 915–922. doi: 10.1073/pnas.1812470116
    van Santen P, Augustinus P G E F, Janssen-Stelder B M, et al. 2007. Sedimentation in an estuarine mangrove system. Journal of Asian Earth Sciences, 29(4): 566–575. doi: 10.1016/j.jseaes.2006.05.011
    Wentworth C K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5): 377–392. doi: 10.1086/622910
    Wiberg P L, Sherwood C R. 2008. Calculating wave-generated bottom orbital velocities from surface-wave parameters. Computers & Geosciences, 34(10): 1243–1262
    Woodroffe C D. 1995. Response of tide-dominated mangrove shorelines in Northern Australia to anticipated sea-level rise. Earth Surface Processes & Landforms, 20(1): 65–85
    Zhou Xiaoyan, Dai Zhijun, Pang Wenhong, et al. 2022. Wave attenuation over mangroves in the Nanliu Delta, China. Frontiers in Marine Science, 9: 874818. doi: 10.3389/fmars.2022.874818
    Zhu Qin, Van Prooijen B C, Wang Zhengbing, et al. 2017. Bed-level changes on intertidal wetland in response to waves and tides: A case study from the Yangtze River Delta. Marine Geology, 385: 160–172. doi: 10.1016/j.margeo.2017.01.003
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  90
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 录用日期:  2022-08-30
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回