Mineralogy and geochemistry of hydrothermal sulphide from a submarine volcanic high at 18°36.4'S Central Lau Spreading Center, Southwest Pacific

Durbar Ray Anil L. Paropkari

Durbar Ray, Anil L. Paropkari. Mineralogy and geochemistry of hydrothermal sulphide from a submarine volcanic high at 18°36.4'S Central Lau Spreading Center, Southwest Pacific[J]. Acta Oceanologica Sinica, 2023, 42(5): 93-101. doi: 10.1007/s13131-022-2121-2
Citation: Durbar Ray, Anil L. Paropkari. Mineralogy and geochemistry of hydrothermal sulphide from a submarine volcanic high at 18°36.4'S Central Lau Spreading Center, Southwest Pacific[J]. Acta Oceanologica Sinica, 2023, 42(5): 93-101. doi: 10.1007/s13131-022-2121-2

doi: 10.1007/s13131-022-2121-2

Mineralogy and geochemistry of hydrothermal sulphide from a submarine volcanic high at 18°36.4'S Central Lau Spreading Center, Southwest Pacific

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of sulphide sampling site. a. Seafloor topography of the Lau Basin in the Southwest Pacific Ocean (modified after Paropkari et al. (2010)). The red box at the central part of the basin marks the location of the MIR diving site, A3 (dive No. M2231). b. The seafloor image of the Central Lau Spreading Center, displaying the sampling site over the volcanic high within the valley of the spreading axis. KTJ: Kings Triple Junction.

    Figure  2.  The sulphide deposit, M2231-10 from Central Lau Spreading Center, Lau Basin. a. The sulphide was sub-sampled into three sections, T31, G31 and B31; as marked by white lines. b. The cross-sectional view of the sub-sample G31, shows the openings of fluid channels (marked by the arrows).

    Figure  3.  Scanning electron microscope photographs and corresponding enegy dispersive X-ray spectroscopy (EDS) results of the surface of hydrothermal sulphide (M2231-10) from volcanic high at Central Lau Spreading Center (a); the magnified image of Fe-rich coating on B31 section (b); the inner surface of fluid channel in G31 section (c), and anhedral Zn-sulphide deposits in T31 section (d).

    Figure  4.  Back-scatter electrons microphotographs (obtained from EPMA) of mineral assemblages in polished sections of the layers, T31, and B31 of sulphide deposit, M2231-10. a. Sphalerite (white) and pyrite (light grey) embedded in silica (dark grey) in B31; b. colloform silica (grey) layered to concentric pyrite (off white) and sphalerite (white) in T31; c. pyrite embedded in amorphous silica in B31; d. pyrite and sphalerite in G31 section.

    Figure  5.  Comparison of cumulative concentration of Cu and Zn in relation to Cu/Zn ratios in hydrothermal sulphides from basalt and ultramafic hosted fields (modified after Fouquet et al. (2010)). CLSC: Central Lau Spreading Center; TAG: Trans-Atlantic Geotraverse; MAR: Mid-Atlantic Ridge; ODP: Ocean Drilling Program.

    Figure  6.  Spatial distribution of average Ba concentrations (wt%) of hydrothermal sulphides from vent fields along different spreading centres of the Lau Basin. The Ba contents in sulphides of Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) are obtained from Fouquet et al. (1991), Sun et al. (2012), and Evans et al. (2017).

    Figure  7.  Chondrite normalized REE-patterns of sub-samples from hydrothermal chimney, M2231-10. Those REE-patterns are compared with other sphalerite and pyrite-rich sulphides from Okinawa Trough (Hongo and Nozaki, 2001); Lau Basin (Paropkari et al., 2010); Mariana volcanic arc (Hein et al., 2014); Fiji Basin (Zeng et al., 2015) in the western Pacific.

    Table  1.   Mineralogical composition of three sections in hydrothermal sulphide sample, M2231-10 from the crater-floor of the volcanic high at Central Lau Spreading Center, Lau Basin

    Top layer (T31) Middle layer around the central groove (G31) Bottom layer (B31)
    Major minerals sphalerite, opaline silica sphalerite, pyrite, opaline silica pyrite, sphalerite
    Trace minerals pyrite, galena marcasite galena, opaline silica
    下载: 导出CSV

    Table  2.   The elemental composition of major minerals (e.g., pyrite, sphalerite, and opaline silica) in three sub-samples of hydrothermal sulphide, M2231-10 from the volcanic high at Central Lau Spreading Center, Lau Basin. The below detection limit (bdl) of microprobe analyses corresponds to the concentration <0.01%

    Sample Pyrite
    Fe/% Co/% Ni/% Cu/% Zn/% Si/% S/% Cd/% Total/%
    T31 47.79 0.02 0.01 0.02 0.01 0.06 52.44 bdl 100.4
    49.50 0.01 0.01 0.02 0.04 1.21 49.51 bdl 100.3
    45.14 0.03 0.02 0.02 0.01 0.09 54.59 bdl 99.9
    46.59 bdl bdl 0.03 bdl 0.05 53.86 bdl 100.5
    47.30 0.02 bdl bdl bdl 0.02 53.42 bdl 100.8
    47.13 bdl bdl bdl 0.04 0.02 53.52 bdl 100.7
    Sample Sphalerite
    Fe/% Co/% Ni/% Cu/% Zn/% Si/% S/% Cd/% Total/%
    T31 4.54 0.02 0.06 0.03 53.11 0.13 33.92 0.41 92.2
    3.65 0.02 0.06 0.04 55.47 0.02 33.76 0.21 93.2
    3.62 bdl 0.02 0.01 52.94 1.35 32.66 0.42 91.0
    3.04 bdl 0.05 bdl 59.45 0.49 33.39 0.59 97.0
    Sample Opaline silica
    Al/% Fe/% Co/% Cu/% Zn/% Si/% S/% O/% Total/%
    T31 0.03 0.33 bdl bdl 0.01 46.66 0.13 53.28 100.4
    0.14 0.38 0.01 bdl 0.08 46.51 0.14 53.22 100.5
    G31 0.29 0.51 bdl bdl 0.04 46.01 0.18 53.05 100.1
    0.30 0.35 0.02 bdl 0.09 46.24 0.13 53.14 100.3
    0.08 0.31 0.02 bdl 0.07 46.55 0.21 53.26 100.5
    下载: 导出CSV

    Table  3.   The concentration of major and trace elements in three sub-samples of hydrothermal sulphide (M2231-10) from volcanic high at Central Lau Spreading Center (CLSC), Lau Basin

    Elements Sections of hydrothermal sulphide from CLSC (M2231-10)
    T31 G31 B31
    Major elements/wt%
    Mn 0.08 0.08 0.10
    Fe 14.50 20.10 26.90
    Cu 1.32 1.01 0.88
    Zn 20.40 19.60 18.10
    Cu+Zn 21.70 20.60 19.90
    Cu/Zn 0.06 0.05 0.10
    Trace elements/10−6
    Sc 12.13 13.74 13.30
    Ti 89.90 93.41 85.14
    V 66.24 69.55 71.30
    Ni 0.91 0.95 1.59
    Rb 4.94 4.87 4.12
    Sr 2.06 2.17 2.05
    Y 0.26 0.17 0.31
    Zr 4.77 5.51 4.65
    Nb 0.38 0.40 0.41
    Mo 13.87 14.56 17.15
    Cd 1 319 1 230 856
    Sn 20.12 19.51 20.98
    Ba 27.68 29.07 34.86
    Hf 0.11 0.23 0.22
    W 1.59 1.13 1.07
    Pb 906 1 029 1 082
    Th 0.062 0.091 0.060
    U 0.11 0.078 0.097
    Ba/Nb 72.70 72.60 85.00
    下载: 导出CSV

    Table  4.   The concentrations of rare earth elements (×10−6) in three sub-samples of hydrothermal sulphide (M2231-10) collected from volcanic high at Central Lau Spreading Center (CLSC), Lau Basin

    REEs Sections of hydrothermal sulphide
    from CLSC (M223-10)
    T31 G31 B31
    La 0.348 0.285 0.385
    Ce 0.358 0.284 0.256
    Pr 0.055 0.051 0.057
    Nd 0.218 0.205 0.270
    Sm 0.068 0.046 0.059
    Eu 0.081 0.070 0.071
    Gd 0.062 0.044 0.038
    Tb 0.010 0.007 0.008
    Dy 0.046 0.036 0.039
    Ho 0.010 0.007 0.012
    Er 0.027 0.028 0.033
    Tm 0.005 0.004 0.004
    Yb 0.037 0.029 0.027
    Lu 0.009 0.007 0.007
    ∑REE 1.334 1.103 1.265
    (Nd/Yb)CN 2.06 2.46 3.48
    (Eu/Eu*)CN 1.61 1.68 1.60
    (Ce/Ce*)CN 0.39 0.34 0.27
    Y/Ho (molar) 48.2 45.0 47.9
    Note: CN=chondrite normalized values (from Sun and McDonough (1989)); (Eu/Eu*)CN=EuCN/(SmCN+GdCN)0.5 and (Ce/Ce*)CN=CeCN/(LaCN+PrCN)0.5.
    下载: 导出CSV
  • Anders E, Grevesse N. 1989. Abundances of the elements: meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1): 197–214. doi: 10.1016/0016-7037(89)90286-X
    Barrett T J, Jarvis I, Jarvis K E. 1990. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge. Geology, 18(7): 583–586. doi: 10.1130/0091-7613(1990)018<0583:REEGOM>2.3.CO;2
    Bau M, Mӧller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(1–2): 123–131
    Bendel V, Fouquet Y, Auzende J M, et al. 1993. The White Lady hydrothermal field, north Fiji Back-Arc Basin, Southwest Pacific. Economic Geology, 88(8): 2237–2245. doi: 10.2113/gsecongeo.88.8.2237
    Dekov V M, Lalonde S V, Kamenov G D, et al. 2015. Geochemistry and mineralogy of a silica chimney from an inactive seafloor hydrothermal field (East Pacific Rise, 18°S). Chemical Geology, 415: 126–140. doi: 10.1016/j.chemgeo.2015.09.017
    Embley R W, Baker E T, Chadwick Jr W W, et al. 2004. Explorations of Mariana arc volcanoes reveal new hydrothermal systems. EOS, Transactions American Geophysical Union, 85(4): 37–40
    Evans G N, Tivey M K, Seewald J S, et al. 2017. Influences of the Tonga Subduction Zone on seafloor massive sulfide deposits along the Eastern Lau Spreading Center and Valu Fa Ridge. Geochimica et Cosmochimica Acta, 215: 214–246. doi: 10.1016/j.gca.2017.08.010
    Falloon T J, Malahoff A, Zonenshain L P, et al. 1992. Petrology and Geochemistry of back-arc basin basalts from Lau Basin spreading ridges at 15°, 18° and 19°S. Mineralogy and Petrology, 47(1): 1–35. doi: 10.1007/BF01165295
    Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In: Rona P A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington: American Geophysical Union, 321–367
    Fouquet Y, von Stackelberg U, Charlou J L, et al. 1991. Hydrothermal activity in the Lau back-arc basin: sulfides and water chemistry. Geology, 19(4): 303–306. doi: 10.1130/0091-7613(1991)019<0303:HAITLB>2.3.CO;2
    Glasby G P, Iizasa K, Yuasa M, et al. 2000. Submarine hydrothermal mineralization on the Izu–bonin arc, south of Japan: an overview. Marine Georesources & Geotechnology, 18(2): 141–176
    Glasby G P, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geology Reviews, 23(3–4): 299–339
    Grant H L J, Hannington M D, Petersen S, et al. 2018. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic ridge, based on LA-ICP-MS analyses of pyrite. Chemical Geology, 498: 45–71. doi: 10.1016/j.chemgeo.2018.08.019
    Hawkins Jr J W. 1995. The geology of the Lau Basin. In: Taylor B, ed. Backarc Basins: Tectonics and Magmatism. Boston: Springer, 63–138
    Hein J R, de Ronde C E J, Koski R A, et al. 2014. Layered hydrothermal barite-sulfide mound field, East Diamante caldera, Mariana volcanic arc. Economic Geology, 109(8): 2179–2206. doi: 10.2113/econgeo.109.8.2179
    Hongo Y, Nozaki Y. 2001. Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya ridge vent field, Okinawa Trough. Geochemical Journal, 35(5): 347–354. doi: 10.2343/geochemj.35.347
    James R H, Elderfield H. 1996. Chemistry of ore-forming fluids and mineral formation rates in an active hydrothermal sulfide deposit on the Mid-Atlantic Ridge. Geology, 24(12): 1147–1150. doi: 10.1130/0091-7613(1996)024<1147:COOFFA>2.3.CO;2
    James R H, Green D R H, Stock M J, et al. 2014. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre. Geochimica et Cosmochimica Acta, 139: 47–71. doi: 10.1016/j.gca.2014.04.024
    Karig D E. 1970. Ridges and basins of the Tonga-Kermadec island arc system. Journal of Geophysical Research, 75(2): 239–254. doi: 10.1029/JB075i002p00239
    Keith M, Haase K M, Schwarz-Schampera U, et al. 2014. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology, 42(8): 699–702. doi: 10.1130/G35655.1
    Keith M, Häckel F, Haase K M, et al. 2016. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews, 72: 728–745. doi: 10.1016/j.oregeorev.2015.07.012
    Kim J, Son S K, Son J W, et al. 2009. Venting sites along the Fonualei and Northeast Lau Spreading Centers and evidence of hydrothermal activity at an off-axis caldera in the northeastern Lau Basin. Geochemical Journal, 43(1): 1–13. doi: 10.2343/geochemj.0.0164
    Koski R A, Jonasson I R, Kadko D C, et al. 1994. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research, 99(B3): 4813–4832. doi: 10.1029/93JB02871
    Lehrmann B, Stobbs I J, Lusty P A J, et al. 2018. Insights into extinct seafloor massive sulfide mounds at the TAG, Mid-Atlantic ridge. Minerals, 8(7): 302. doi: 10.3390/min8070302
    Lisitzin A P, Lukashin V N, Gordeev V V, et al. 1997. Hydrological and geochemical anomalies associated with hydrothermal activity in SW Pacific marginal and back-arc basins. Marine Geology, 142(1–4): 7–45
    Malahoff A, Falloon T. 1991. Preliminary report of the RV Akademik Mstislav Keldysh/ MIR cruise 1990, Lau Basin Leg (May 7−21), on behalf of the Keldysh/ Mir Science Team. http://pacific-data.sprep.org/dataset/preliminary -report-akademik-mstislav-keldyshmir-cruise-1990-lau-basin-leg-may-7-21-1[2022-5-1]
    Maslennikov V V, Cherkashov G, Artemyev D A, et al. 2020. Pyrite varieties at Pobeda hydrothermal fields, Mid-Atlantic ridge 17°07′–17°08′N: LA-ICP-MS data deciphering. Minerals, 10(7): 622. doi: 10.3390/min10070622
    Maslennikov V V, Maslennikova S P, Large R R, et al. 2017. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geology Reviews, 85: 64–106. doi: 10.1016/j.oregeorev.2016.09.012
    Meng Xingwei, Li Xiaohu, Chu Fengyou, et al. 2020. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1–2°S). Ore Geology Reviews, 116: 103209. doi: 10.1016/j.oregeorev.2019.103209
    Mills R A, Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N mid-Atlantic ridge. Geochimica et Cosmochimica Acta, 59(17): 3511–3524. doi: 10.1016/0016-7037(95)00224-N
    Mottl M J, Seewald J S, Wheat C G, et al. 2011. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica et Cosmochimica Acta, 75(4): 1013–1038. doi: 10.1016/j.gca.2010.12.008
    Münch U, Blum N, Halbach P. 1999. Mineralogical and geochemical features of sulfide chimneys from the MESO zone, Central Indian Ridge. Chemical Geology, 155(1–2): 29–44
    Münch U, Lalou C, Halbach P, et al. 2001. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E—mineralogy, chemistry and chronology of sulfide samples. Chemical Geology, 177(3–4): 341–349
    Paropkari A L, Ray D, Balaram V, et al. 2010. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: the geochemical perspectives. Journal of Asian Earth Sciences, 38(3–4): 121–130
    Parson L M, Pearce J A, Murton B J, et al. 1990. Role of ridge jumps and ridge propagation in the tectonic evolution of the Lau back-arc basin, Southwest Pacific. Geology, 18(5): 470–473. doi: 10.1130/0091-7613(1990)018<0470:RORJAR>2.3.CO;2
    Pearce J A, Ernewein M, Bloomer S H, et al. 1994. Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity. Geological Society, London, Special Publications, 81(1): 53–75
    Perrin A, Goes S, Prytulak J, et al. 2018. Mantle wedge temperatures and their potential relation to volcanic arc location. Earth and Planetary Science Letters, 501: 67–77. doi: 10.1016/j.jpgl.2018.08.011
    Ray D, Banerjee R, Balakrishnan S, et al. 2017. S- and Sr-isotopic compositions in barite–silica chimney from the Franklin Seamount, Woodlark Basin, Papua New Guinea: constraints on genesis and temporal variability of hydrothermal fluid. International Journal of Earth Sciences, 106(5): 1723–1733. doi: 10.1007/s00531-016-1381-5
    Ray D, Banerjee R, Mazumder A, et al. 2018. Mineralogical and geochemical variation in hydrothermal sulfides from Vienna Woods field, Manus Basin, Papua New Guinea: constraints on their evolution. Acta Oceanologica Sinica, 37(4): 22–33. doi: 10.1007/s13131-018-1194-4
    Ray D, Kota D, Das P, et al. 2014. Microtexture and distribution of minerals in hydrothermal barite-silica chimney from the Franklin Seamount, SW Pacific: Constraints on mode of formation. Acta Geologica Sinica-English Edition, 88(1): 213–225. doi: 10.1111/1755-6724.12192
    Scott S D. 1983. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineralogical Magazine, 47(345): 427–435. doi: 10.1180/minmag.1983.047.345.03
    Stoffers P, Worthington T J, Schwarz-Schampera U, et al. 2006. Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, Southwest Pacific. Geology, 34(6): 453–456. doi: 10.1130/G22227.1
    Sun Zhilei, Zhou Huaiyang, Yang Qunhui, et al. 2012. Growth model of a hydrothermal low-temperature Si-rich chimney: Example from the CDE hydrothermal field, Lau Basin. Science China Earth Sciences, 55(10): 1716–1730. doi: 10.1007/s11430-012-4485-1
    Suzuki R, Ishibashi J I, Nakaseama M, et al. 2008. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin. Resource Geology, 58(3): 267–288. doi: 10.1111/j.1751-3928.2008.00061.x
    Tivey M K. 1995. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction. Geochimica et Cosmochimica Acta, 59(10): 1933–1949. doi: 10.1016/0016-7037(95)00118-2
    Wang Shujie, Li Huaiming, Zhai Shikui, et al. 2017a. Geochemical features of sulfides from the deyin-1 hydrothermal field at the southern Mid-Atlantic ridge near 15°S. Journal of Ocean University of China, 16(6): 1043–1054. doi: 10.1007/s11802-017-3316-6
    Wang Shujie, Li Huaiming, Zhai Shikui, et al. 2017b. Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15°S, southern Mid-Atlantic Ridge. Acta Oceanologica Sinica, 36(2): 22–34. doi: 10.1007/s13131-016-0961-3
    Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. 2015. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study. Geochimica et Cosmochimica Acta, 159: 16–41. doi: 10.1016/j.gca.2015.03.020
    Zellmer K E, Taylor B. 2001. A three-plate kinematic model for Lau basin opening. Geochemistry, Geophysics, Geosystems, 2(5): 2000GC000106
    Zeng Zhigang, Ma Yao, Yin Xuebo, et al. 2015. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems. Geochemistry, Geophysics, Geosystems, 16(8): 2679–2693
    Zhang Xia, Zhai Shikui, Yu Zenghui, et al. 2018. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough. Journal of Marine Systems, 180: 124–131. doi: 10.1016/j.jmarsys.2016.11.007
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  91
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-02
  • 录用日期:  2022-09-20
  • 网络出版日期:  2023-03-07
  • 刊出日期:  2023-05-25

目录

    /

    返回文章
    返回