Origin of hydrocarbon fluids and discussion of abnormal carbon isotopic compositions in the Lishui-Jiaojiang Sag, East China Sea Shelf Basin

Jingqi Xu

Jingqi Xu. Origin of hydrocarbon fluids and discussion of abnormal carbon isotopic compositions in the Lishui-Jiaojiang Sag, East China Sea Shelf Basin[J]. Acta Oceanologica Sinica, 2023, 42(3): 76-88. doi: 10.1007/s13131-022-2128-8
Citation: Jingqi Xu. Origin of hydrocarbon fluids and discussion of abnormal carbon isotopic compositions in the Lishui-Jiaojiang Sag, East China Sea Shelf Basin[J]. Acta Oceanologica Sinica, 2023, 42(3): 76-88. doi: 10.1007/s13131-022-2128-8

doi: 10.1007/s13131-022-2128-8

Origin of hydrocarbon fluids and discussion of abnormal carbon isotopic compositions in the Lishui-Jiaojiang Sag, East China Sea Shelf Basin

Funds: The “Seven Year Action Plan” East China Sea Special Project of CNOOC under contract No. CNOOC-KJ 135 ZDXM 39 SH02.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Schematic map showing the location of the Lishui-Jiaojiang Sag (a), major geological structures, L1 gas field, and selected wells in the Lishui-Jiaojiang Sag (b), and geological units and faulting systems in a schematic cross-section (c). Location of c is shown as A–A' in b. Fm., Formation; LR, Lingfeng Ridge.

    Figure  2.  Generalized stratigraphic column, tectonic evolution, and petroleum system of the Lishui-Jiaojiang Sag. Note the thickness of each unit is not to scale. Fm., Formation.

    Figure  3.  Representative partial whole oil chromatograms of the oil samples from the L1 gas pool. a. Production well; b. DST sample from the discovery well; and c. typical compounds identified.

    Figure  4.  Natural gases from the L1 gas pool plotted on the two most commonly used diagrams in all previous studies for gas interpretations. a. Plot of the δ13C1 vs. δ13C2 and δ13C3 diagram (modified after Dai et al., 2014); b. plot of the C1/(C2+C3) vs. δ13C1 diagram (modified after Bernard et al., 1976; Whiticar, 1999).

    Figure  5.  Natural gases from the L1 gas pool plotted on genetic diagrams (modified after Milkov and Etiope (2018)). a. C1/(C2+C3) vs. δ13C1 diagram; b. δ13C1 vs. δ13CO2 diagram. CR, CO2 reduction; EMT, early mature thermogenic gas; F, methyl-type fermentation; LMT, late mature thermogenic gas; OA, oil-associated thermogenic gas; SM, secondary microbial.

    Figure  6.  Natural gases of the L1 gas pool plotted on methane genetic diagrams of δ13C-CH4 vs. δD-CH4. a. modified after Schoell (1983); b. modified after Whiticar (1999, 2020); c. modified after Milkov and Etiope (2018). CR, CO2 reduction; EMT, early mature thermogenic gas; F, methyl-type fermentation; LMT, late mature thermogenic gas; OA, oil-associated thermogenic gas; SM, secondary microbial.

    Figure  7.  Natural gases of the L1 gas pool plotted on genetic diagrams (modified after Milkov, 2021). a. δ13C1 vs. δ13C2 and b. δ13C1 vs. Δ(δ13C2δ13C1). EMT, early mature thermogenic gas; LMT, late mature thermogenic gas; OA, oil-associated thermogenic gas.

    Figure  8.  Natural gases of the L1 gas pool plotted on genetic diagrams (modified after Berner and Faber, 1996). a. δ13C2 vs. δ13C3, b. δ13C1 vs. δ13C2. The carbon isotope values of the pure thermogenic gas are inferred by the parallel shifts of δ13C2 values to the treadline. Ro, vitrinite reflectance.

    Figure  9.  Carbon isotopic compositions of C1−C4 gases from the L1 gas pool exhibited on the natural gas plot (Chung et al., 1988). Dashed lines indicate the extrapolation of carbon isotope values of C2−C4 gases to obtain the estimated δ13C of pure thermogenic methane from –37.0‰ to –38.5‰.

    Figure  10.  Ternary plot showing the distribution of C7 light hydrocarbons in condensate oil samples of the L1 gas pool (modified after Dai et al., 1992; Hu et al., 2008).

    Figure  11.  Condensate oil samples from the L1 gas pool plotted on the two commonly used diagrams for light hydrocarbon interpretations. a. Cross-plot of n-heptane values vs. iso-heptane values (modified after Thompson, 1983), and b. cross-plot of n-heptane/methylcyclohexane vs. toluene/n-heptane (modified after Thompson, 1987).

    Figure  12.  Schematic burial-thermal histories reconstructed for the Well L1 by the 1D model of PetroMod software. Thermal evolutions and major hydrocarbon generation histories of both Yueguifeng and Lingfeng source rocks have been highlighted. Easy Ro is calculated after Sweeney and Burnham (1990). MYF, Mingyuefeng; LF, Lingfeng.; YGF, Yueguifeng; SMT, Shimentan; OJ, Oujiang; WZ, Wenzhou; N, Neogene; Q, Quaternary; Fm., formation.

    Table  1.   Selected published studies investigating the origins of hydrocarbon fluids in the L1 gas pool

    StudySampleInterpreted origin
    Sun and Xi (2003)gasmixture of mid- to high-maturity sapropelic-type gas from the Yueguifeng Formation and low- to mid-maturity
    humic-type gas from the Lingfeng Formation
    oilfrom the Lingfeng and Mingyuefeng formations
    Chen et al. (2008)gasmid-maturity sapropelic-type gas from the Yueguifeng Formation
    Ge et al. (2012)oilfrom the Lingfeng and Mingyuefeng formations
    Su et al. (2014)gasmixture of high-maturity sapropelic-type gas from the Yueguifeng Formation and the low maturity humic-type gas from the Mingyuefeng Formation
    oilpredominantly low-maturity humic-type oil from the Mingyuefeng Formation
    Li et al. (2021)gaspredominantly oil-associated gas from the Yueguifeng Formation
    oilpredominantly from the Lingfeng Formation with a minor portion from the Yueguifeng Formation
    This studygasmixture of primary microbial methane from the Mingyuefeng Formation and mid-maturity sapropelic-type gas from the Yueguifeng Formation
    oilearly- to mid-maturity humic-type oil from the Lingfeng Formation
    下载: 导出CSV

    Table  2.   Molecular compositions and gas ratios of natural gases from the L1 gas pool

    WellFormationChemical composition (volume)/%Gas ratioData source
    C1C2C3i-C4n-C4i-C5n-C5CO2N2C1/Σ(C1−C5)C1/(C2+C3)
    Production wellsMYF56.553.742.110.500.640.260.1932.863.090.889.66this paper
    MYF54.453.592.030.480.620.250.1935.702.640.889.70
    MYF51.833.401.920.450.590.240.1838.442.910.889.75
    MYF54.603.672.090.490.640.260.1934.733.280.889.48
    MYF51.973.401.910.450.580.240.1738.272.940.889.78
    Discovery wellMYF55.453.631.880.420.470.150.0934.153.550.8910.06DST
    MYF55.103.671.920.430.480.160.0934.503.440.899.86
    Note: MYF, Mingyuefeng; DST, drill stem test.
    下载: 导出CSV

    Table  3.   Stable carbon and deuterium isotopes of natural gases from the L1 gas pool

    WellFormationC isotope/‰H isotope/‰Data source
    C1C2C3i-C4n-C4i-C5n-C5CO2C1
    Production wellsMYF–46.87–30.29–27.59–28.42–26.67–26.61–26.30–6.92–173.80this paper
    MYF–46.73–30.24–27.59–28.34–26.67–26.42–26.20–6.88–173.11
    MYF–46.58–30.15–27.56–28.44–26.42–26.67–26.01–6.77–177.00
    MYF–46.58–30.11–27.44–28.36–26.63–26.25–25.83–7.10–175.06
    MYF–46.62–30.01–27.34–28.15–26.86–26.05–26.37–6.62–174.98
    Discovery wellMYF–46.30–29.55–26.96–26.86–5.03DST
    MYF–46.13–29.31–27.07–26.93–4.67
    下载: 导出CSV

    Table  4.   Bulk compositional and physical characteristics of oil samples from the L1 gas pool

    WellFormationDensity/(g·cm−3)S content/%SARAData source
    SAT/%ARO/%NSO/%ASP/%
    Production wellsMYF0.7520.006387.911.40.50.2this paper
    MYF0.7530.006388.810.70.40.1
    MYF0.7610.008188.211.00.60.2
    MYF0.7540.006387.411.90.60.1
    MYF0.7520.005888.111.10.60.2
    Discovery wellMYF0.7510.013095.53.90.50.1DST
    MYF0.7510.013091.27.41.20.2
    Note: SAT, saturated hydrocarbons; ARO, aromatic hydrocarbons; NSO, resins; ASP, asphaltenes.
    下载: 导出CSV

    Table  5.   Light hydrocarbon parameters of the oil samples from the L1 gas pool

    WellFormationC7/%iso-heptane
    value
    n-heptane
    value
    ParaffinicityAromaticity2, 4-DMP/
    2, 3-DMP
    Data source
    n-C7MCHΣDMCP
    Production wellsMYF20.4660.2719.271.0014.990.340.490.42this paper
    MYF20.3260.4519.240.9814.920.340.500.42
    MYF19.9561.2418.810.9714.800.330.500.41
    MYF20.3460.2419.420.9914.890.340.500.42
    MYF20.4460.0119.560.9914.880.340.510.43
    Discovery wellMYF20.5259.7319.752.0013.590.340.39DST
    MYF18.7161.2820.001.9212.760.310.04
    Note: n-C7%=n-C7×100/(n-C7+MCH+∑DMCP); MCH%=MCH×100/(n-C7+MCH+∑DMCP); ∑DMCP%=∑DMCP×100/(n-C7+MCH+∑DMCP). iso-heptane value=(2-MH+3-MH)/(t-1, 2-DMCP+c-1, 3-DMCP+t-1, 3-DMCP); n-heptane value=(100×n-C7)/(CH+2-MH+1,1-DMCP+3-MH+c-1,3-DMCP+t-1,3-DMCP+t-1,2-DMCP+n-C7+MCH); paraffinicity=n-heptane/methylcyclohexane; aromaticity=toluene/n-heptane.
    下载: 导出CSV

    Table  6.   Selected geochemical parameters of source rock samples and carbon isotopic compositions of thermal simulation products (modified after Chen et al., 2008).

    WellFormationSource rock assessmentSimulation
    T/℃
    Yield rate of hydrocarbons/
    (mL·g−1)
    C isotopes of simulated gas/‰Data
    source
    TOC/%Ro/%HI/(mg·g−1)δ13C/‰C1C2C3i-C4n-C4
    W1YGF2.650.58344–26.342598.67–37.96–30.92–29.61–29.23–27.95Chen
    et al. (2008)
    YGF2.650.58344–26.3450146.64–36.95–30.33–26.83–26.09–22.78
    W2YGF2.891.0774–28.145043.01–42.18–23.39–17.71
    LF1.610.8880–26.445066.07–31.43–19.97–12.98
    L1LF0.850.869–25.345064.47–33.06–21.04–15.28
    Note: YGF, Yueguifeng; LF, Lingfeng. See Fig. 1b for well locations.
    下载: 导出CSV
  • BeMent W O, Levey R A, Mango F D. 1995. The temperature of oil generation as defined with C7 chemistry maturity parameter (2, 4-DMP/2, 3-DMP ratio). In: Grimalt J O, Dorronsoro C, eds. Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History. Donostian-San Sebastian: European Association of Organic Geochemists, 505–507
    Bernard B B, Brooks J M, Sackett W M. 1976. Natural gas seepage in the Gulf of Mexico. Earth and Planetary Science Letters, 31(1): 48–54. doi: 10.1016/0012-821X(76)90095-9
    Berner U, Faber E. 1996. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Organic Geochemistry, 24(10/11): 947–955
    Cesar J, Nightingale M, Becker V, et al. 2020. Stable carbon isotope systematics of methane, ethane and propane from low-permeability hydrocarbon reservoirs. Chemical Geology, 558: 119907. doi: 10.1016/j.chemgeo.2020.119907
    Chen Jianping, Ge Heping, Chen Xiaodong, et al. 2008. Classification and origin of natural gases from Lishui Sag, the East China Sea Basin. Science in China Series D: Earth Sciences, 51(1): 122–130
    Chung H M, Gormly J R, Squires R M. 1988. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chemical Geology, 71(1–3): 97–104
    Cukur D, Horozal S, Kim D C, et al. 2011. Seismic stratigraphy and structural analysis of the northern East China Sea Shelf Basin interpreted from multi-channel seismic reflection data and cross-section restoration. Marine and Petroleum Geology, 28(5): 1003–1022. doi: 10.1016/j.marpetgeo.2011.01.002
    Dai Jinxing, Gong Deyu, Ni Yunyan, et al. 2014. Stable carbon isotopes of coal-derived gases sourced from the Mesozoic coal measures in China. Organic Geochemistry, 74: 123–142. doi: 10.1016/j.orggeochem.2014.04.002
    Dai Jinxing, Pei Xigu, Qi Houfa. 1992. Natural Gas Geology in China, vol. 1 (in Chinese). Beijing: Petroleum Industry Press, 35–86
    Ge Heping, Chen Xiaodong, Diao Hui, et al. 2012. An analysis of oil geochemistry and sources in Lishui sag, East China Sea basin. China Offshore Oil and Gas (in Chinese), 24(4): 8–12,31
    Hu Guoyi, Li Jian, Li Jin, et al. 2008. Preliminary study on the origin identification of natural gas by the parameters of light hydrocarbon. Science in China Series D: Earth Sciences, 51(S1): 131–139. doi: 10.1007/s11430-008-5017-x
    Hu Guoyi, Peng Weilong, Yu Cong. 2017. Insight into the C8 light hydrocarbon compositional differences between coal-derived and oil-associated gases. Journal of Natural Gas Geoscience, 2(3): 157–163. doi: 10.1016/j.jnggs.2017.08.001
    Huang Yaohao, Tarantola A, Lu Wanjun, et al. 2020. CH4 accumulation characteristics and relationship with deep CO2 fluid in Lishui sag, East China Sea Basin. Applied Geochemistry, 115: 104563. doi: 10.1016/j.apgeochem.2020.104563
    Katz B J. 2011. Microbial processes and natural gas accumulations. The Open Geology Journal, 5: 75–83. doi: 10.2174/1874262901105010075
    Li Deyong, Dong Bingjie, Jiang Xiaodian, et al. 2016. Geochemical evidence for provenance and tectonic background from the Palaeogene sedimentary rocks of the East China Sea Shelf Basin. Geological Journal, 51(S1): 209–228
    Li Yang, Zhang Jinliang, Liu Yang, et al. 2019. Organic geochemistry, distribution and hydrocarbon potential of source rocks in the Paleocene, Lishui Sag, East China Sea Shelf Basin. Marine and Petroleum Geology, 107: 382–396. doi: 10.1016/j.marpetgeo.2019.05.025
    Li Yang, Zhang Jinliang, Xu Yaohui, et al. 2021. Improved understanding of the origin and accumulation of hydrocarbons from multiple source rocks in the Lishui Sag: Insights from statistical methods, gold tube pyrolysis and basin modeling. Marine and Petroleum Geology, 134: 105361. doi: 10.1016/j.marpetgeo.2021.105361
    Liang Jintong, Wang Hongliang. 2019. Cenozoic tectonic evolution of the East China Sea Shelf Basin and its coupling relationships with the Pacific Plate subduction. Journal of Asian Earth Sciences, 171: 376–387. doi: 10.1016/j.jseaes.2018.08.030
    Liu Quanyou, Wu Xiaoqi, Wang Xiaofeng, et al. 2019. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas. Earth-Science Reviews, 190: 247–272. doi: 10.1016/j.earscirev.2018.11.017
    Mango F D. 1987. An invariance in the isoheptanes of petroleum. Science, 237(4814): 514–517. doi: 10.1126/science.237.4814.514
    Mango F D. 1990. The origin of light hydrocarbons in petroleum: a kinetic test of the steady-state catalytic hypothesis. Geochimica et Cosmochimica Acta, 54(5): 1315–1323. doi: 10.1016/0016-7037(90)90156-F
    Mango F D. 1997. The light hydrocarbons in petroleum: a critical review. Organic Geochemistry, 26(7–8): 417–440
    Milkov A V, Dzou, L. 2007. Geochemical evidence of secondary microbial methane from very slight biodegradation of undersaturated oils in a deep hot reservoir. Geology, 35(5): 455–458. doi: 10.1130/G23557A.1
    Milkov A V. 2021. New approaches to distinguish shale-sourced and coal-sourced gases in petroleum systems. Organic Geochemistry, 158: 104271. doi: 10.1016/j.orggeochem.2021.104271
    Milkov A V, Etiope G. 2018. Revised genetic diagrams for natural gases based on a global dataset of >20, 000 samples. Organic Geochemistry, 125: 109–120. doi: 10.1016/j.orggeochem.2018.09.002
    Schellart W P, Lister G S. 2005. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia. Journal of the Geological Society, 162(6): 959–972. doi: 10.1144/0016-764904-112
    Schoell M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta, 44(5): 649–661. doi: 10.1016/0016-7037(80)90155-6
    Schoell M. 1983. Genetic characterization of natural gases. AAPG Bulletin, 67(12): 2225–2238
    Su Ao, Chen Honghan, Cao Laisheng, et al. 2014. Genesis, source and charging of oil and gas in Lishui Sag, East China Sea Basin. Petroleum Exploration and Development, 41(5): 574–584. doi: 10.1016/S1876-3804(14)60068-9
    Sun Yumei, Xi Xiaoying. 2003. Petroleum reservoir filling history and oil-source correlation in the Lishui Sag, East China Sea Basin. Petroleum Exploration and Development, 30(6): 24–28
    Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinectics. AAPG Bulletin, 74(10): 1559–1570
    Tang Y, Perry J K, Jenden P D, et al. 2000. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochimica et Cosmochimica Acta, 64(15): 2673–2687. doi: 10.1016/S0016-7037(00)00377-X
    Ten Haven H L. 1996. Applications and limitations of Mango’s light hydrocarbon parameters in petroleum correlation studies. Organic Geochemistry, 24(10/11): 957–976
    Thompson K F M. 1983. Classification and thermal history of petroleum based on light hydrocarbons. Geochimica et Cosmochimica Acta, 47(2): 303–316. doi: 10.1016/0016-7037(83)90143-6
    Thompson K F M. 1987. Fractionated aromatic petroleums and the generation of gas-condensates. Organic Geochemistry, 11(6): 573–590. doi: 10.1016/0146-6380(87)90011-8
    Vandré C, Cramer B, Gerling P, et al. 2007. Natural gas formation in the western Nile delta (Eastern Mediterranean): Thermogenic versus microbial. Organic Geochemistry, 38(4): 523–539. doi: 10.1016/j.orggeochem.2006.12.006
    Wang Xiaofeng, Liu Wenhui, Shi Baoguang, et al. 2015. Hydrogen isotope characteristics of thermogenic methane in Chinese sedimentary basins. Organic Geochemistry, 83–84: 178–189
    Whiticar M J. 1996. Isotope tracking of microbial methane formation and oxidation. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen, 25(1): 39–54
    Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1–3): 291–314
    Whiticar M J. 2020. The biogeochemical methane cycle. In: Wilkes H, ed. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Springer, 669–746
    Yang Shuchun, Hu Shengbiao, Cai Dongsheng, et al. 2004. Present-day heat flow, thermal history and tectonic subsidence of the East China Sea Basin. Marine and Petroleum Geology, 21(9): 1095–1105. doi: 10.1016/j.marpetgeo.2004.05.007
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  165
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 录用日期:  2022-10-21
  • 网络出版日期:  2022-11-25
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回