Early Cenozoic paleontological assemblages and provenance evolution of the Lishui Sag, East China Sea

Yingzhao Zhang Yiming Jiang Zhenghua Liu Shuai Li Ning Li Jinshui Liu Peijun Qiao Kai Zhong Shuhui Chen Thian Lai Goh

Yingzhao Zhang, Yiming Jiang, Zhenghua Liu, Shuai Li, Ning Li, Jinshui Liu, Peijun Qiao, Kai Zhong, Shuhui Chen, Thian Lai Goh. Early Cenozoic paleontological assemblages and provenance evolution of the Lishui Sag, East China Sea[J]. Acta Oceanologica Sinica, 2023, 42(3): 113-122. doi: 10.1007/s13131-022-2133-y
Citation: Yingzhao Zhang, Yiming Jiang, Zhenghua Liu, Shuai Li, Ning Li, Jinshui Liu, Peijun Qiao, Kai Zhong, Shuhui Chen, Thian Lai Goh. Early Cenozoic paleontological assemblages and provenance evolution of the Lishui Sag, East China Sea[J]. Acta Oceanologica Sinica, 2023, 42(3): 113-122. doi: 10.1007/s13131-022-2133-y

doi: 10.1007/s13131-022-2133-y

Early Cenozoic paleontological assemblages and provenance evolution of the Lishui Sag, East China Sea

Funds: The National Natural Science Foundation of China under contract Nos 42076066 and 92055203.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Simplified geological map and sample locations of the basin in the East China Sea. The samples of datum sources of the Mesozoic Volcanic rock from costal Zhejiang-Fujian were as follows: A1, A2, A3 and A4 were adopted from Xing et al. (2008); B1, B2, B3 and B4 were adopted from Liu et al. (2012); C1, C2, C3, C4 and C5 were adopted from Cui et al. (2010); D1 was adopted from Wang et al. (2003); and G1 was adopted from Dong et al. (2010). The datum sources of Changjiang River, Oujiang, and Taiwan were adopted respectively from Zheng et al. (2013), Xu et al. (2007), and Hou et al (2021).

    Figure  2.  Stratigraphic framework of the Lishui Sag and sampling information.

    Figure  3.  Zircon U-Pb spectra of the Lishui Depression basement and potential source terranes. The samples datum sources of the Mesozoic volcanic rock from coastal Zhejiang-Fujian were adopted from Xing et al. (2008), Liu et al. (2012), Cui et al. (2010), Wang et al. (2003), and Dong et al. (2010). n is the number of concordant analyses.

    Figure  4.  Marine fossil records and sea level changes of the Lishui Sag.

    Figure  5.  Detrital zircon U-Pb age spectra of Cretaceous to upper Eocene samples from the Lishui Sag.

    Figure  6.  Evolutionary stages of sedimentary environment during Paleocene to Eocene.

    Table  1.   Dating data table of the Mesozoic volcanic rock from coastal Zhejiang-Fujian

    Sample nameDating methodAge/MaReferenceNumber of particlesLocation
    A1Zircon U-Pb dating130.1±4Xing et al., 200815Xianyou, Fujian Province
    A2Zircon U-Pb dating143±7Xing et al., 20086Xianyou, Fujian Province
    A3Zircon U-Pb dating162±4Xing et al., 200813Shekou, Fujian Province
    A4Zircon U-Pb dating150±5Xing et al., 200815Shekou, Fujian Province
    B1Zircon U-Pb dating177±1Liu et al., 201221Maonong, Zhejiang Province
    B2Zircon U-Pb dating93.8±0.6Liu et al., 201215Xiaoxiong, Zhejiang Province
    B3Zircon U-Pb dating135.3±10.9Liu et al., 201220Dashuang, Zhejiang Province
    B4Zircon U-Pb dating138±1Liu et al., 201220Dashuang, Zhejiang Province
    C1Zircon U-Pb dating120.0±1.4Cui et al., 201015Wenxi,Qingtian, Zhejiang Province
    C2Zircon U-Pb dating109.4±9.3Cui et al., 20102Jingjia Moutain, Yongjia, Zhejiang Province
    C3Zircon U-Pb dating118.1±2.3Cui et al., 201012Dadilin,Tiantai, Zhejiang Province
    C4Zircon U-Pb dating104.1±3.5Cui et al., 20103Xuantandi, Fenghua, Zhejiang Province
    C5Zircon U-Pb dating102.1±2.2Cui et al., 20104Jingling, Xinchang, Zhejiang Province
    D1Zircon U-Pb dating117.7±2.7Wang et al., 20038Fuyang, Zhejiang Province
    G1Ar-Ar dating93.4Dong et al., 201019Dongji island, Zhoushan, Zhejiang Province
    下载: 导出CSV
  • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1–2): 59–79
    Cao Licheng, Shao Lei, Qiao Peijun, et al. 2017. Geochemical evolution of Oligocene–middle Miocene sediments in the deep-water area of the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 80: 358–368. doi: 10.1016/j.marpetgeo.2016.12.010
    Chen Bing, Wang Jialin, Wu Jiansheng, et al. 2002. Study on the basement properties of the south Haijiao Uplift in the East China Sea Shelf Basin. Petroleum Geology & Experiment (in Chinese), 24(4): 301–305
    Cui Yuchi, Cao Licheng, Qiao Peijun, et al. 2018. Provenance evolution of Paleogene sequence (northern South China Sea) based on detrital zircon U-Pb dating analysis. Earth Science (in Chinese), 43(11): 4169–4179
    Cui Yuchi, Shao Lei, Li Zhengxiang, et al. 2021a. A Mesozoic Andean-type active continental margin along coastal South China: new geological records from the basement of the northern South China Sea. Gondwana Research, 99: 36–52. doi: 10.1016/j.gr.2021.06.021
    Cui Yuchi, Shao Lei, Qiao Peijun, et al. 2019. Upper Miocene–Pliocene provenance evolution of the Central Canyon in northwestern South China Sea. Marine Geophysical Research, 40(2): 223–235. doi: 10.1007/s11001-018-9359-2
    Cui Yuchi, Shao Lei, Yu Mengming, et al. 2021b. Formation of Hengchun accretionary prism Turbidites and implications for deep-water transport processes in the northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 55–65. doi: 10.1111/1755-6724.14640
    Cui Yurong, Xie Zhi, Chen Jiangfeng, et al. 2010. SHRIMP U-Pb dating of zircons from the late Mesozoic basalts in eastern Zhejiang province and its geological significance. Geological Journal of China Universities (in Chinese), 16(2): 198–212
    Dong Cuanwan, Yan Qiang, Zhang Dengrong, et al. 2010. Late Mesozoic extension in the coastal area of Zhejiang and Fujian provinces: a petrologic indicator from the Dongji Island mafic dike swarms. Acta Petrologica Sinica (in Chinese), 26(4): 1195–1203
    Feng Congjun, Yao Xingzong, Yang Haizhang, et al. 2021. Source-sink system and sedimentary model of Progradational Fan delta controlled by restricted ancient gully: an example in the Enping Formation in the southern Baiyun Sag, Pearl River Mouth Basin, northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 232–247. doi: 10.1111/1755-6724.14627
    Gradstein F M, Ogg J G, Hilgen F J. 2012. On the geologic time scale. Newsletters on Stratigraphy, 45(2): 171–188. doi: 10.1127/0078-0421/2012/0020
    Guo Zhen, Gao Shunli, Wang Jianqiang, et al. 2015. U-Pb dating of the zircon from Cenozoic basement rock and its tectonic significance in the Lishui Sag of the East China Sea Shelf Basin. Marine Science Bulletin (in Chinese), 34(6): 675–687
    Hou Yuanli, Zhu Weilin, Qiao Peijun, et al. 2021. Sediment source and environment evolution in Taiwan Island during the Eocene–Miocene. Acta Oceanologica Sinica, 40(2): 114-122
    Jiang Liang. 2003. Exploration status and perspective of petroleum resources in East China Sea Shelf Basin. China Offshore Oil and Gas (Geology) (in Chinese), 17(1): 1–5
    Jiang Yiming, Zou Wei, Liu Jinshui, et al. 2020. Genetic mechanism of inversion anticline structure at the end of Miocene in Xihu Sag, East China Sea: a new understanding of basement structure difference. Earth Science (in Chinese), 45(3): 968–979
    Kwon Y I, Boggs S Jr. 2002. Provenance interpretation of Tertiary sandstones from the Cheju Basin (NE East China Sea): a comparison of conventional petrographic and scanning cathodoluminescence techniques. Sedimentary Geology, 152(1–2): 29–43
    Li Jiabiao, Ding Weiwei, Wu Ziyin, et al. 2017a. Origin of the East China Sea. Scientia Sinica Terrae (in Chinese), 47(4): 406–411. doi: 10.1360/N072017-00006
    Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2): 179–182. doi: 10.1130/G23193A.1
    Li Sanzhong, SuoYanhui, Li Xiyao, et al. 2018. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone. Chinese Science Bulletin (in Chinese), 63(16): 1550–1593
    Li Qianyu, Wu Guoxuan, Zhang Lili, et al. 2017b. Paleogene marine deposition records of rifting and breakup of the South China Sea: an overview. Science China Earth Sciences (in Chinese), 60(12): 2128–2140. doi: 10.1007/s11430-016-0163-x
    Liu Jinshui, Xu Huaizhi, Jiang Yiming, et al. 2020. Mesozoic and Cenozoic Basin structure and tectonic evolution in the East China Sea Basin. Acta Geologica Sinica (in Chinese), 94(3): 675–691
    Liu Lei, Xu Xisheng, Zou Haibo. 2012. Episodic eruptions of the late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos, 154: 166–180. doi: 10.1016/j.lithos.2012.07.002
    Ma Ruishi. 2006. New Thought about the Tectonic Evolution of the South China: with discussion on several problems of the Cathaysian old land. Geological Journal of China Universities (in Chinese), 12(4): 448–456
    Meng Xianbo, Shao Lei, Cui Yuchi, et al. 2021. Sedimentary Records from Hengchun accretionary prism turbidites on Taiwan Island: Implication on late Neogene migration rate of the Luzon subduction system. Marine and Petroleum Geology, 124: 104820. doi: 10.1016/j.marpetgeo.2020.104820
    Qing Lanzhi, Liu Jinshui, Li Shuai, et al. 2017. Characteristics of zircon in the Huagang Formation of the ccentral inversion zone of Xihu Sag and its provenance indication. Petroleum Geology & Experiment (in Chinese), 39(4): 498–504, 526
    Ren Jianye. 2018. Genetic dynamics of China offshore Cenozoic basins. Earth Science (in Chinese), 43(10): 3337–3361
    Shao Lei, Cao Licheng, Pang Xiong, et al. 2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255–269
    Shao Lei, Cui Yuchi, Qiao Peijun, et al. 2019a. Implications on the early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution. Journal of Palaeogeography (in Chinese), 21(2): 216–231
    Shao Lei, Cui Yuchi, Stattegger K, et al. 2019b. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian plate. GSA Bulletin, 131(3–4): 461–478
    Shao Lei, Lu Yi, Qiao Peijun, et al. 2022. Mutual transformation between longitudinal and transverse transportation of sediments in arc-continental collision zone. Journal of Palaeogeography (in Chinese), 24(5): 894–907
    Shao Lei, Qiao Peijun, Pang Xiong, et al. 2009. Nd isotopic variations and its implications in the recent sediments from the northern South China Sea. Chinese Science Bulletin, 54(2): 311–317
    Shen Yulin, Qin Yong, Cui Min, et al. 2021. Geochemical characteristics and sedimentary control of Pinghu Formation (Eocene) coal-bearing source rocks in Xihu Depression, East China Sea Basin. Acta Geologica Sinica (English Edition), 95(1): 91–104. doi: 10.1111/1755-6724.14624
    Suo Yanhui, Li Sanzhong, Dai Liming, et al. 2012. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins. Acta Petrologica Sinica (in Chinese), 28(8): 2602–2618
    Tang Xianjun, Jiang Yiming, Zhang Shaoliang. 2018. Tectonic environment of volcanic rocks in the Pinghu slope belt and its petroleum geological significance. Geological Science and Technology Information (in Chinese), 37(1): 27–36
    Tian Bing, Li Xiaoyan, Pang Guoyin, et al. 2012. Sedimentary systems of the superimposed rift-subsidence basin: taking Lishui-Jiaojiang Sag of the East China Sea as an example. Acta Sedimentologica Sinica (in Chinese), 30(4): 696–705
    Tian Zhiwen, Tang Wu, Wang Pujun, et al. 2021. Tectonic evolution and key geological issues of the Proto-South China Sea. Acta Geologica Sinica (English Edition), 95(1): 77–90. doi: 10.1111/1755-6724.14644
    Wang Jian, Bao Chaomin, Gao Yonghua, et al. 2003. Zircon SHRIMP U-Pb dating of monzogranite-porphyry dikes in Shengongcun, northern Zhejiang, and its geological implications. Geological Bulletin of China (in Chinese), 22(9): 729–732
    Wang Wei, Bidgoli T, Yang Xianghua, et al. 2018. Source-to-sink links between east Asia and Taiwan from detrital zircon geochronology of the Oligocene Huagang Formation in the East China Sea Shelf Basin. Geochemistry, Geophysics, Geosystems, 19(10): 3673–3688
    Wang Pinxian, Min Qiubao, Bian Yunhua. 1982. On the sedimentary environments of the Paleogene strata in oil-bearing basins in the eastern part of China. Geological Review (in Chinese), 28(5): 402–412
    Xing Guangfu, Lu Qingdi, Chen Rong, et al. 2008. Study on the ending time of late Mesozoic tectonic regime transition in South China-comparing to the Yanshan area in North China. Acta Geologica Sinica (in Chinese), 82(4): 451–463
    Xu Xisheng, O’Reilly S Y, Griffin W L, et al. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1–2): 51–78
    Yang Wencai, He Jianjun, Jiang Jinsheng, et al. 2022. A synthetic study of the crust structures of Zhejiang Province. Acta Geologica Sinica (in Chinese), 96(1): 95–103
    Yu Jianhai, Wang Lijuan, O’Reilly S Y, et al. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 174(3–4): 347–363
    Zhang Hao, Cui Yuchi, Qiao Peijun, et al. 2021. Evolution of the Pearl River and its implication for East Asian continental landscape reversion. Acta Geologica Sinica (English Edition), 95(1): 66–76. doi: 10.1111/1755-6724.14641
    Zhang Gongcheng, Deng Yunhua, Wu Jingfu, et al. 2013a. Coal measure source-rock characteristics and gas exploration directions in Cenozoic superimposed faulted depressions, offshore China. China Offshore Oil and Gas (in Chinese), 25(6): 15–25
    Zhang Gongcheng, Feng Congjun, Yao Xingzong, et al. 2021a. Petroleum geology in Deepwater settings in a passive continental margin of a marginal sea: a case study from the South China Sea. Acta Geologica Sinica (English Edition), 95(1): 1–20. doi: 10.1111/1755-6724.14621
    Zhang Jianpei, Li Sanzhong, Suo Yanhui. 2016. Formation, tectonic evolution and dynamics of the East China Sea Shelf Basin. Geological Journal, 51(S1): 162–175
    Zhang Gongcheng, Mi Lijun, Qu Hongjun, et al. 2011. A basic distributional framework of global Deepwater basins and hydrocarbon characteristics. Acta Petrolei Sinica (in Chinese), 32(3): 369–378
    Zhang Gongcheng, Miao Shunde, Chen Ying, et al. 2013b. Distribution of gas enrichment regions controlled by source rocks and geothermal heat in China offshore basins. Natural Gas Industry (in Chinese), 33(4): 1–17
    Zhang Gongcheng, Wu Aijun, Li Hongyi, et al. 2021b. Hydrocarbon enrichment and main controlling factors in offshore rift basins of China: a case study in the Beibuwan Basin. Acta Geologica Sinica (English Edition), 95(1): 192–207. doi: 10.1111/1755-6724.14632
    Zhao Honggang, Li Ying, Chang Xiangchun, et al. 2021a. A comparative study of the coal-forming characteristics of Marginal Sea Basins and Epicontinental Sea Basins. Acta Geologica Sinica (English Edition), 95(1): 121–130
    Zhao Meng, Shao Lei, Liang Jianshe, et al. 2015. No Red River capture since the late Oligocene: geochemical evidence from the northwestern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 122: 185–194. doi: 10.1016/j.dsr2.2015.02.029
    Zhao Zhigang, Zhang Hao, Cui Yuchi, et al. 2021b. Cenozoic Sea-land transition and its petroleum geological significance in the northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 41–54. doi: 10.1111/1755-6724.14628
    Zheng Hongbo, Clift P D, Wang Ping, et al. 2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556–7561. doi: 10.1073/pnas.1216241110
    Zhong Kai, Zhu Weilin, Gao Shunli, et al. 2018. Key geological questions of the formation and evolution and hydrocarbon accumulation of the East China Sea Shelf Basin. Earth Science (in Chinese), 43(10): 3485–3497
    Zhou Zuyi, Yang Fengli, Jia Jianyu, et al. 2002. Quantitative study on inversion structures in Xihu Depression, East China Sea: constraints from fission track analysis data. Marine Geology & Quaternary Geology (in Chinese), 22(1): 63–67
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  122
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 录用日期:  2022-11-15
  • 网络出版日期:  2022-12-21
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回