Features and factors of radium isotopes in Tianjin’s typical estuaries

Zhe Zhang Yingchun Dong Lixin Yi Xin Hao Yajie Zheng Tianxue Lü

Zhe Zhang, Yingchun Dong, Lixin Yi, Xin Hao, Yajie Zheng, Tianxue Lü. Features and factors of radium isotopes in Tianjin’s typical estuaries[J]. Acta Oceanologica Sinica, 2023, 42(8): 134-146. doi: 10.1007/s13131-023-2146-1
Citation: Zhe Zhang, Yingchun Dong, Lixin Yi, Xin Hao, Yajie Zheng, Tianxue Lü. Features and factors of radium isotopes in Tianjin’s typical estuaries[J]. Acta Oceanologica Sinica, 2023, 42(8): 134-146. doi: 10.1007/s13131-023-2146-1

doi: 10.1007/s13131-023-2146-1

Features and factors of radium isotopes in Tianjin’s typical estuaries

Funds: The National Natural Science Foundation of China under contract No. 42172273.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The scope of the study area and sampling stations. HG: Hangu; TG: Tanggu; DG: Dagang; HH: Haihe River; DLJ: Duliujian River.

    Figure  2.  Horizontal distribution of 223Ra (a, b), 224Ra (c, d) and 228Ra (e, f) activities in groundwater (HG: Hangu; TG: Tanggu; DG: Dagang).

    Figure  3.  Horizontal distribution of 223Ra (a−c), 224Ra (d−f) and 228Ra (g−i) activities in surface water (HH: Haihe River; DLJ: Duliujian River).

    Figure  4.  Activity of 223Ra, 224Ra and 228Ra in surface water (Haihe River (a) and Duliujian River (b)) at each station.

    Figure  5.  Groundwater vertical distribution of 223Ra, 224Ra and 228Ra activities in spring (a−c) and autumn (d−f).

    Figure  6.  Different kinds of plots depicting 223Ra (a, b), 224Ra (c, d) and 228Ra (e, f) activities of groundwater (HG: Hangu; TG: Tanggu; DG: Dagang) in relationship with total dissolved solid (TDS) in spring and autumn.

    Figure  7.  Different kinds of plots depicting 223Ra (a−c), 224Ra (d−f) and 228Ra (g−i) activities of surface water (HH: Haihe River; DLJ: Duliujian River) in relationship with total dissolved solid (TDS) in spring, summer and autumn.

    Figure  8.  Different kinds of plots depicting 223Ra, 224Ra and 228Ra activities in relationship with ${{\rm {NO}}_3^{-}} $ (a, b) and ${{\rm {SO}}_4^{2-}} $ (c, d) in spring and autumn.

    Figure  9.  Relationship between 224Ra/228Ra isotope activity ratio and precipitation (mm) under different seasonal variations in groundwater (a, b) and surface water (c, d).

    Figure  10.  Relationship between rapid urbanization and radium isotopes in Tianjin Binhai New Area. SGD: submarine groundwater discharge.

    Table  1.   Measurements of 223Ra, 224Ra and 228Ra in groundwater

    SampleDepth/mLatitudeLongitude223Ra/(dpm·(100 L)−1)224Ra/(dpm·(100 L)−1)228Ra/(dpm·(100 L)−1)
    SpringAutumnSpringAutumnSpringAutumn
    HG1 15 39.21°N 117.63°E 3.18 1.07 35.22 21.92 23.61 35.97
    HG3 15 39.18°N 117.66°E 0.28 0.57 26.97 41.07 3.61 40.31
    HG4 15 39.17°N 117.67°E 0.13 31.30 11.12
    HG4 30 39.17°N 117.67°E 0.26 9.03 6.71
    HG5 15 39.16°N 117.67°E 5.61 17.78 383.21 503.87 201.48 332.40
    HG6 15 39.15°N 117.69°E 5.68 631.97 374.02
    HG6 30 39.15°N 117.69°E 0.24 56.28 64.14
    HG7 15 39.15°N 117.70°E 9.93 2.44 612.76 95.93 231.90 236.06
    TG1 15 38.93°N 117.67°E 10.53 209.42 425.16
    TG2 15 38.94°N 117.66°E 5.87 138.73 416.04
    TG3 15 38.95°N 117.65°E 102.94 618.67 488.19
    TG3 30 38.95°N 117.65°E 1.49 24.74 65.34 1936.98 36.57 32.61
    TG4 15 38.95°N 117.63°E 22.99 885.81 310.46
    TG5 15 38.95°N 117.61°E 1.34 9.94 80.45 317.81 72.22 169.45
    TG5 30 38.95°N 117.61°E 2.31 0.89 3384.80 104.72 1099.93 23.24
    TG7 15 38.97°N 117.56°E 0.66 0.52 63.47 17.42 93.21 33.73
    TG8 15 38.99°N 117.53°E 1.20 1.49 40.92 52.20 55.61 55.11
    TG8 30 38.99°N 117.53°E 7.49 289.43 340.15
    TG9 15 39.00°N 117.47°E 1.68 0.11 104.48 25.38 66.16 69.78
    DG1 15 38.64°N 117.38°E 38.41 12.80 976.90 448.77 809.54 236.07
    DG1 30 38.64°N 117.38°E 3.51 0.01 132.69 11.68 100.23 13.61
    DG2 15 38.64°N 117.40°E 113.35 40.24 2702.10 906.58 949.95 904.35
    DG3 15 38.65°N 117.44°E 70.22 1.06 1383.59 71.15 623.95 456.40
    DG4 15 38.66°N 117.47°E 64.15 66.05 1489.13 1563.82 471.53 928.50
    DG4 30 38.66°N 117.47°E 3.12 2.79 86.04 111.23 65.22 318.54
    DG5 15 38.66°N 117.49°E 321.64 61.40 3022.17 1814.50 1047.14 1063.86
    DG5 30 38.66°N 117.49°E 2.74 4.45 58.27 126.65 63.36 573.35
    DG6 15 38.66°N 117.51°E 356.12 61.55 3281.96 1846.62 1452.83 1810.29
    DG7 30 38.66°N 117.52°E 357.64 1.59 3026.60 182.59 1100.73 198.41
    DG7 15 38.66°N 117.52°E 2.48 15.92 198.73 947.32 332.17 1035.72
    DG8 15 38.66°N 117.56°E 314.88 11.17 4276.96 214.62 2004.84 572.41
    DG9 15 38.66°N 117.55°E 47.34 24.28 1671.79 552.71 639.33 825.89
    DG9 30 38.66°N 117.55°E 10.32 4.51 314.65 173.82 415.58 495.18
    DG10 15 38.67°N 117.54°E 91.89 18.79 2105.74 426.99 766.39 1060.53
    Note: HG: Hangu; TG: Tanggu; DG: Dagang. − represents no data.
    下载: 导出CSV

    Table  2.   Measurements of 223Ra, 224Ra and 228Ra in surface water

    StationLatitudeLongitude223Ra/(dpm·(100 L)−1)224Ra/(dpm·(100 L)−1)228Ra/(dpm·(100 L)−1)
    SpringSummerAutumnSpringSummerAutumnSpringSummerAutumn
    HH1 39.13°N 117.20°E 0.24 0.31 0.39 7.06 10.16 7.64 11.39 15.15 7.41
    HH2 39.10°N 117.24°E 0.34 0.36 0.38 4.55 8.76 6.25 8.95 13.56 7.53
    HH3 39.08°N 117.29°E 0.38 0.29 0.43 6.92 9.04 8.57 10.75 24.95 9.59
    HH4 39.05°N 117.51°E 0.11 0.29 0.41 5.20 10.43 8.04 14.07 10.45 9.12
    HH5 38.99°N 117.51°E 0.46 0.73 0.70 17.05 17.35 12.20 50.68 35.65 34.67
    HH6 38.98°N 117.58°E 0.79 0.54 0.84 17.10 18.30 14.56 59.69 58.07 37.85
    HH7 38.99°N 117.71°E 2.13 2.34 2.03 40.43 50.07 45.02 193.13 156.77 188.08
    DLJ1 38.84°N 117.30°E 2.02 2.49 1.13 51.75 50.62 23.09 52.11 53.61 41.17
    DLJ2 38.88°N 117.21°E 2.79 1.95 1.35 56.38 46.00 31.80 53.48 41.84 39.58
    DLJ3 38.91°N 117.18°E 2.08 2.14 1.34 60.20 49.91 25.85 50.85 51.42 37.98
    DLJ4 38.99°N 117.09°E 1.59 1.46 1.22 42.58 30.92 27.64 32.28 20.32 27.61
    DLJ5 39.00°N 117.06°E 1.95 0.93 0.98 43.54 45.48 22.39 33.34 38.84 22.57
    DLJ6 39.03°N 116.98°E 2.25 1.54 0.72 56.04 42.10 20.46 44.32 31.06 19.46
    DLJ7 39.05°N 116.92°E 1.08 1.55 0.66 33.07 31.75 15.81 33.85 29.92 18.99
    Note: HH: Haihe River; DLJ: Duliujian River.
    下载: 导出CSV

    Table  3.   Measurements of chemical concentration parameters in groundwater in spring

    SampleDepth/
    m
    TDS/
    (mg·L−1)
    K+/
    (mg·L−1)
    Ca2+/
    (mg·L−1)
    Na+/
    (mg·L−1)
    Mg2+/
    (mg·L−1)
    ${{\rm {HCO}_3^-}} $/
    (mg·L−1)
    ${{\rm {SO}}_4^{2-}} $/
    (mg·L−1)
    $ {{\rm {NO}}_3^-} $/
    (mg·L−1)
    ${\rm{Cl}}^- $/
    (mg·L−1)
    HG11515678676011613197136012500.921130
    HG3158824824343051339307601.292570
    HG415673111610354342845531180.52123
    HG430425721262998625582320.25360
    HG51534702232187760235736228601.2123100
    HG61523180267199305734341247000.7414200
    HG63014994161706949254897400.676730
    HG71519313205113216631458532300.6212700
    TG115796544813709682382533142006.6054000
    TG2155220335435187913995665501.7635700
    TG3151048334903035048397293140002.2184300
    TG33012134153229915089398322137002.3691000
    TG4152296335169201735466141100.8115400
    TG515582552493391247538939003.0940900
    TG53046801254279103953821025801.4032900
    TG71510776354685231034848700.25714
    TG815466519442849687235208.37433
    TG83022007141105156832325514123.504880
    TG915610335483978757554621.97748
    DG115269121929766823438418551.8617900
    DG130169491172131163393008550.9312200
    DG21544082299181885038647424901.2931400
    DG31528403254112469137650824601.0620000
    DG41543380274213893935521840800.9029300
    DG430172976553454233418114201.0010700
    DG515700403433131467337923161001.2648000
    DG530202077513463553107214600.8711800
    DG615579513443111298037330346401.2339000
    DG730591153143011301037727333401.3041500
    DG715239471569210128318829700.9712200
    DG815803003952641615937445646501.5258000
    DG915728363952341491137312260001.4450800
    DG9302054723911638003206214100.8314600
    DG1015438263241981093036738444202.9927200
    Note: − represents no data. TDS: total dissolved solids.
    下载: 导出CSV

    Table  4.   Measurements of chemical concentration parameters in groundwater in autumn

    SampleDepth/
    m
    TDS/
    (mg·L−1)
    K+/
    (mg·L−1)
    Ca2+/
    (mg·L−1)
    Na+/
    (mg·L−1)
    Mg2+/
    (mg·L−1)
    ${{\rm {HCO}_3^-}} $/
    (mg·L−1)
    ${{\rm {SO}}_4^{2-}} $/
    (mg·L−1)
    $ {{\rm {NO}}_3^-} $/
    (mg·L−1)
    ${\rm{Cl} }^- $/
    (mg·L−1)
    HG11546914726127422883710050.521274
    HG3156997664621031726458341.263130
    HG5159657766284826723116271.154600
    HG7152665418150768790924916980.5615880
    TG3157356816998474140080153118142.3619760
    TG3301647121721832442208546176120342.4697180
    TG515701962686701952037497033762.2442540
    TG530800812807572071042576648701.4049140
    TG71519352427549803083331.03612
    TG81520151143645415062314.64533
    TG91524702426730823764221.88808
    DG1158701506323783651812721.765391
    DG1301512393237630374310.83568
    DG2156434833721117110296011328361.1940780
    DG315469392566712490206614926600.9929250
    DG41557208751961634016616140740.8534800
    DG43053374173491448018484225411.0034240
    DG515863533804232225031935967181.1653330
    DG530674213093711749024474040040.8542760
    DG615842404025832226021737750941.2253650
    DG730842544305532206029967437001.2954440
    DG7153044220545843310553530.8720350
    DG8153348828147586218184839331.4419310
    DG9159424068082569030304970121.5057770
    DG930380442321451035011072918900.9324290
    DG10156600144622017170235014155103.0140160
    Note: − represents no data. TDS: total dissolved solids.
    下载: 导出CSV

    Table  5.   Stratigraphic division of groundwater (Hangu (HG), Tanggu (TG) and Dagang (DG)) profiles

    Study
    area
    Layer bottom
    elevation/m
    Composition of sediments
    HG−9.6sand silty sand layer
    HG−18.0silt layer
    HG−19.0silt layer
    HG−21.0clay silty sand layer
    TG−18.6clay silty sand layer
    TG−19.2shell sand layer
    TG−20.3clay silty sand layer
    TG−23.0silt layer
    DG−10.0clay silty sand layer and fine sand layer
    DG−16.7clay silty sand layer
    DG−30.2clay silty sand layer
    下载: 导出CSV
  • Abboud I A. 2018. Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan. Environmental Geochemistry and Health, 40(4): 1405–1435. doi: 10.1007/s10653-017-0064-x
    Adelana S M, Heaven M W, Dresel P E, et al. 2020. Controls on species distribution and biogeochemical cycling in nitrate-contaminated groundwater and surface water, southeastern Australia. Science of the Total Environment, 726: 138426. doi: 10.1016/j.scitotenv.2020.138426
    Baskaran S, Ransley T, Brodie R S, et al. 2009. Investigating groundwater–river interactions using environmental tracers. Australian Journal of Earth Sciences, 56(1): 13–19. doi: 10.1080/08120090802541887
    Beck A J, Cochran M A. 2013. Controls on solid-solution partitioning of radium in saturated marine sands. Marine Chemistry, 156: 38–48. doi: 10.1016/j.marchem.2013.01.008
    Beck A J, Rapaglia J P, Cochran J K, et al. 2007. Radium mass-balance in Jamaica Bay, NY: evidence for a substantial flux of submarine groundwater. Marine Chemistry, 106(3–4): 419–441,
    Cao Xuliang, Corriveau J. 2008. Migration of bisphenol A from polycarbonate baby and water bottles into water under severe conditions. Journal of Agricultural and Food Chemistry, 56(15): 6378–6381. doi: 10.1021/jf800870b
    Charette M A, Morris P J, Henderson P B, et al. 2015. Radium isotope distributions during the US GEOTRACES North Atlantic cruises. Marine Chemistry, 177: 184–195. doi: 10.1016/j.marchem.2015.01.001
    Charette M A, Sholkovitz E R. 2002. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophysical Research Letters, 29(10): 1444. doi: 10.1029/2001g104512
    Charette M A, Sholkovitz E R. 2006. Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water. Geochimica et Cosmochimica Acta, 70(4): 811–826. doi: 10.1016/j.gca.2005.10.019
    Chen Guangquan, Xu Bochao, Zhao Shibin, et al. 2022. Submarine groundwater discharge and benthic biogeochemical zonation in the Huanghe River Estuary. Acta Oceanologica Sinica, 41(1): 11–20. doi: 10.1007/s13131-021-1882-3
    Elsinger R J, Moore W S. 1980. 226Ra behavior in the Pee Dee River-Winyah Bay estuary. Earth and Planetary Science Letters, 48(2): 239–249. doi: 10.1016/0012-821X(80)90187-9
    Garcia-Orellana J, Rodellas V, Tamborski J, et al. 2021. Radium isotopes as submarine groundwater discharge (SGD) tracers: review and recommendations. Earth-Science Reviews, 220: 103681. doi: 10.1016/j.earscirev.2021.103681
    Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749–2765. doi: 10.1016/0016-7037(88)90143-3
    Gonneea M E, Morris P J, Dulaiova H, et al. 2008. New perspectives on radium behavior within a subterranean estuary. Marine Chemistry, 109(3–4): 250–267,
    Grundl T, Cape M. 2006. Geochemical factors controlling radium activity in a sandstone aquifer. Groundwater, 44(4): 518–527. doi: 10.1111/j.1745-6584.2006.00162.x
    IAEA. 2014. The environmental behaviour of radium: revised edition. Vienna: International Atomic Energy Agency, 33–51
    Jiao Jiu-jimmy, Leung Chi-man, Ding Guoping. 2008. Changes to the groundwater system, from 1888 to present, in a highly-urbanized coastal area in Hong Kong, China. Hydrogeology Journal, 16(8): 1527–1539. doi: 10.1007/s10040-008-0332-z
    Kelly R P, Moran S B. 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnology and Oceanography, 47(6): 1796–1807. doi: 10.4319/lo.2002.47.6.1796
    Kiro Y, Yechieli Y, Voss C I, et al. 2012. Modeling radium distribution in coastal aquifers during sea level changes: the Dead Sea case. Geochimica et Cosmochimica Acta, 88: 237–254. doi: 10.1016/j.gca.2012.03.022
    Krest J M, Harvey J W. 2003. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge. Limnology and Oceanography, 48(1): 290–298. doi: 10.4319/lo.2003.48.1.0290
    Ku T L, Huh C A, Chen P S. 1980. Meridional distribution of 226Ra in the eastern Pacific along GEOSECS cruise tracks. Earth and Planetary Science Letters, 49(2): 293–308. doi: 10.1016/0012-821X(80)90073-4
    Langmuir D, Melchior D. 1985. The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro Basin, Texas. Geochimica et Cosmochimica Acta, 49(11): 2423–2432. doi: 10.1016/0016-7037(85)90242-X
    Lei Kun, Meng Wei, Zheng Binghui, et al. 2007. Variations of water and sediment discharges to the western coast of Bohai Bay and the environmental impacts. Acta Scientiae Circumstantiae (in Chinese), 27(12): 2052–2059
    Liao Fu, Wang Guangcai, Yi Lixin, et al. 2020. Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China. Journal of Hydrology, 585: 124782. doi: 10.1016/j.jhydrol.2020.124782
    Liu Rongfang, Chen Honghan, Wang Yanliang, et al. 2007. Analysis on characteristics of groundwater pollution in the oilfield. Ground Water (in Chinese), 29(3): 62–66
    Liu Huatai, Guo Zhanrong, Gao Aiguo, et al. 2013. Distribution characteristics of radium and determination of transport rate in the Min River Estuary Mixing Zone. Journal of Jilin University: Earth Science Edition (in Chinese), 43(6): 1966–1971
    Liu Yi, Jiao Jiu-jimmy, Mao Rong, et al. 2019. Spatial characteristics reveal the reactive transport of radium isotopes (224Ra, 223Ra, and 228Ra) in an intertidal aquifer. Water Resources Research, 55(12): 10282–10302. doi: 10.1029/2019WR024849
    Liu Lingling, Yi Lixin, Cheng Xiaoqing, et al. 2015. Distribution of 223Ra and 224Ra in the Bo Sea embayment in Tianjin and its implication of submarine groundwater discharge. Journal of Environmental Radioactivity, 150: 111–120. doi: 10.1016/j.jenvrad.2015.08.008
    Lu Xinyan, Yi Lixin, Pu Tao, et al. 2022. Quantifying the groundwater seepage along a glacier originated river by integrated use of radium isotopes and hydrochemistry. Journal of Environmental Radioactivity, 251–252: 106959,
    Luo Xin, Jiao Jiu-jimmy, Moore W S, et al. 2014. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production. Marine Pollution Bulletin, 82(1–2): 144–154,
    Moore W S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380(6575): 612–614. doi: 10.1038/380612a0
    Moore W S. 2000a. Determining coastal mixing rates using radium isotopes. Continental Shelf Research, 20(15): 1993–2007. doi: 10.1016/S0278-4343(00)00054-6
    Moore W S. 2000b. Ages of continental shelf waters determined from 223Ra and 224Ra. Journal of Geophysical Research: Oceans, 105(C9): 22117–22122. doi: 10.1029/1999JC000289
    Moore W S. 2008. Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting. Marine Chemistry, 109(3–4): 188–197,
    Moore W S. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2: 59–88. doi: 10.1146/annurev-marine-120308-081019
    Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1): 1321–1329. doi: 10.1029/95JC03139
    Moore W S, Astwood H, Lindstrom C. 1995. Radium isotopes in coastal waters on the Amazon shelf. Geochimica et Cosmochimica Acta, 59(20): 4285–4298. doi: 10.1016/0016-7037(95)00242-R
    Moore W S, Blanton J O, Joye S B. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research, 111(C9): C09006. doi: 10.1029/2005jc003041
    Moore W S, Key R M, Sarmiento J L. 1985. Techniques for precise mapping of 226Ra and 228Ra in the ocean. Journal of Geophysical Research: Oceans, 90(C4): 6983–6994. doi: 10.1029/JC090iC04p06983
    Nie Hongtao, Tao Jianhua. 2009. Eco-environment status of the Bohai Bay and the impact of coastal exploitation. Marine Science Bulletin, 11(2): 81–96
    Parmaksız A, Ağuş Y, Bulgurlu F, et al. 2015. Measurement of enhanced radium isotopes in oil production wastes in Turkey. Journal of Environmental Radioactivity, 141: 82–89. doi: 10.1016/j.jenvrad.2014.12.011
    Pei Yandong, Wang Guoming. 2016. Engineering geological characteristics of Late Quaternary sediments in the southern coastal area of Tianjin Binhai New Area. Geological Survey and Research (in Chinese), 39(3): 215–220
    Plater A J, Ivanovich M, Dugdale R E. 1995. 226Ra contents and 228Ra/226Ra activity ratios of the Fenland rivers and the Wash, eastern England: spatial and seasonal trends. Chemical Geology, 119(1–4): 275–292,
    Pulido-Bosch A, Rigol-Sanchez J P, Vallejos A, et al. 2018. Impacts of agricultural irrigation on groundwater salinity. Environmental Earth Sciences, 77(5): 197. doi: 10.1007/s12665-018-7386-6
    Shao Haibing, Kulik D A, Berner U, et al. 2009. Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column. Geochemical Journal, 43(6): e37–e42. doi: 10.2343/geochemj.1.0069
    Sherif M I, Lin Jiajia, Poghosyan A, et al. 2018. Geological and hydrogeochemical controls on radium isotopes in groundwater of the Sinai Peninsula, Egypt. Science of The Total Environment, 613–614: 877–885,
    Silva K B, Mattos J B. 2020. A spatial approach for the management of groundwater quality in tourist destinations. Tourism Management, 79: 104079. doi: 10.1016/j.tourman.2020.104079
    Stefánsson A, Arnórsson S, Sveinbjörnsdóttir Á E. 2005. Redox reactions and potentials in natural waters at disequilibrium. Chemical Geology, 221(3–4): 289–311,
    Su Ni, Du Jinzhou, Liu Sumei, et al. 2013. Nutrient fluxes via radium isotopes from the coast to offshore and from the seafloor to upper waters after the 2009 spring bloom in the Yellow Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 97: 33–42. doi: 10.1016/j.dsr2.2013.05.003
    Sun Congjian, Chen Ruoxia, Zhang Ziyu, et al. 2018. Temporal and spatial variation of hydrochemical characteristics of shallow groundwater in Shanxi Province. Arid Land Geography (in Chinese), 41(2): 314–324
    Tang Guoqiang, Yi Lixin, Liu Lingling, et al. 2015. Factors influencing the distribution of 223Ra and 224Ra in the coastal waters off Tanggu and Qikou in Bohai Bay. Continental Shelf Research, 109: 177–187. doi: 10.1016/j.csr.2015.09.003
    Trainer F W, Heath R C. 1976. Bicarbonate content of groundwater in carbonate rock in eastern North America. Journal of Hydrology, 31(1–2): 37–55,
    Underwood E C, Ferguson G A, Betcher R, et al. 2009. Elevated Ba concentrations in a sandstone aquifer. Journal of Hydrology, 376(1–2): 126–131,
    van der Loeff M R, Kühne S, Wahsner M, et al. 2003. 228Ra and 226Ra in the Kara and Laptev seas. Continental Shelf Research, 23(1): 113–124. doi: 10.1016/S0278-4343(02)00169-3
    Vinson D S, Tagma T, Bouchaou L, et al. 2013. Occurrence and mobilization of radium in fresh to saline coastal groundwater inferred from geochemical and isotopic tracers (Sr, S, O, H, Ra, Rn). Applied Geochemistry, 38: 161–175. doi: 10.1016/j.apgeochem.2013.09.004
    Waska H, Kim S, Kim G, et al. 2008. An efficient and simple method for measuring 226Ra using the scintillation cell in a delayed coincidence counting system (RaDeCC). Journal of Environmental Radioactivity, 99(12): 1859–1862. doi: 10.1016/j.jenvrad.2008.08.008
    Wu Yinghai, Zhu Weibin, Chen Xiaohua, et al. 2005. Effects of enclosing-bank and hydraulic fill projects on water environment. Water Resources Protection (in Chinese), 21(2): 53–56
    Xiao Qingcong, Wei Yuansong, Wang Yawei, et al. 2012. Driving factors of coastal wetland degradation in Binhai New Area of Tianjin. Acta Scientiae Circumstantiae (in Chinese), 32(2): 480–488
    Yi Lixin, Dong Na, Zhang L, et al. 2019. Radium isotopes distribution and submarine groundwater discharge in the Bohai Sea. Groundwater for Sustainable Development, 9: 100242. doi: 10.1016/j.gsd.2019.100242
    Yi Lixin, Zhang Fang, Xu He, et al. 2011. Land subsidence in Tianjin, China. Environmental Earth Sciences, 62(6): 1151–1161. doi: 10.1007/s12665-010-0604-5
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  136
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 录用日期:  2023-01-28
  • 网络出版日期:  2023-05-12
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回