Differences in spring precipitation over southern China associated with multiyear La Niña events

Guangliang Li Licheng Feng Wei Zhuang Fei Liu Ronghua Zhang Cuijuan Sui

Guangliang Li, Licheng Feng, Wei Zhuang, Fei Liu, Ronghua Zhang, Cuijuan Sui. Differences in spring precipitation over southern China associated with multiyear La Niña events[J]. Acta Oceanologica Sinica, 2024, 43(2): 1-10. doi: 10.1007/s13131-023-2147-0
Citation: Guangliang Li, Licheng Feng, Wei Zhuang, Fei Liu, Ronghua Zhang, Cuijuan Sui. Differences in spring precipitation over southern China associated with multiyear La Niña events[J]. Acta Oceanologica Sinica, 2024, 43(2): 1-10. doi: 10.1007/s13131-023-2147-0

doi: 10.1007/s13131-023-2147-0

Differences in spring precipitation over southern China associated with multiyear La Niña events

Funds: The National Natural Science Foundation of China under contract Nos 41576029, 41976221 and 42030410; the National Key Research and Development Program of China under contract No. 2019YFA0606702; the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The time evolution of the Niño3.4 index (℃) based on the HadISST dataset from 1901 to 2020. The year indicated by blue (light blue) bars at the bottom is the year 0 of the multi-year (single-year) La Niña event.

    Figure  2.  Time series of the Niño3.4 index (℃) from Jun. (−1) to Jun. (2) for 10 multiyear La Niña events (a) and 12 single-year La Niña events (b). The solid blue line is the composite time series. The year that the first La Niña develop is regard as year 0. The following year is year 1 and so on.

    Figure  3.  Observed precipitation anomalies (mm/month) during winter (a and b) and spring (c and d) of composite multiyear La Niña events from 1901 to 2015. Black dots indicate the areas where precipitation anomalies are statistically significant above a 90% confidence level. The background map downloaded from http://211.159.153.75/browse.html?picId=%224o28b0625501ad13015501ad2bfc2188%22.

    Figure  4.  Observed 850 hPa horizontal wind (vector, m/s), SLP (contours, hPa) and precipitation (shading, mm/month) anomalies of the 10 multiyear La Niña events. The wind anomalies at 90% confidence level are shown in purple.

    Figure  5.  Vertically integrated moisture (VIM) flux (vector; kg/(s · m)) with convergence and divergence (shading; 10–5 kg/(s · m2)) above the 90% confidence level are shown.

    Figure  6.  Vertical velocity of air at 500 hPa; red regions are anomalous ascending motion and blue regions are anomalous descending motion. Dots indicate the areas where vertical velocity anomalies are statistically significant above a 90% confidence level.

    Figure  7.  Observed SST anomalies (shading, ℃) and wind at 850 hPa (vector, m/s) in the first and second winters (a and b) and spring (c and d) of composite multiyear La Niña events. Dots indicate the areas where SST anomalies are statistically significant above a 90% confidence level.

    Figure  8.  Observed SST (shading in the ocean, ℃), precipitation (shading in the land, mm/month) and 850 hPa wind anomalies (vector, m/s) in spring during single-year La Niña (a), precipitation and WNPC index and their correlation for the first (blue dot) and second (red dot) spring of multiyear La Niña and single-year La Niña (black dot) (b), and precipitation and Niño3.4 index and their correlation (c). Red vectors and dots in a indicate the areas where 850 hPa wind anomalies and SST/precipitation anomalies are statistically significant above a 90% confidence level, respectively.

  • Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3): 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
    Chen Wen, Graf H F, Huang Ronghui. 2000. The interannual variability of east Asian winter monsoon and its relation to the summer monsoon. Advances in Atmospheric Sciences, 17(1): 48–60, doi: 10.1007/s00376-000-0042-5
    Chen Jiepeng, Wen Zhiping, Wu Renguang, et al. 2014. Interdecadal changes in the relationship between southern China winter-spring precipitation and ENSO. Climate Dynamics, 43(5): 1327–1338, doi: 10.1007/s00382-013-1947-x
    DiNezio P N, Deser C. 2014. Nonlinear controls on the persistence of La Niña. Journal of Climate, 27(19): 7335–7355
    DiNezio P N, Deser C, Karspeck A, et al. 2017. A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophysical Research Letters, 44(22): 11624–11635, doi: 10.1002/2017GL074904
    Feng Licheng, Liu Fei, Zhang Ronghua, et al. 2021. On the second-year warming in late 2019 over the tropical pacific and its attribution to an Indian Ocean dipole event. Advances in Atmospheric Sciences, 38(12): 2153–2166, doi: 10.1007/s00376-021-1234-4
    Feng Licheng, Zhang Ronghua, Wang Zhangui, et al. 2015. Processes leading to second-year cooling of the 2010–12 La Niña event, diagnosed using GODAS. Advances in Atmospheric Sciences, 32(3): 424–438, doi: 10.1007/s00376-014-4012-8
    Feng Licheng, Zhang Ronghua, Yu Bo, et al. 2020. Roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event. Advances in Atmospheric Sciences, 37(8): 847–860, doi: 10.1007/s00376-020-0028-4
    Gao Chuan, Chen Maonan, Zhou Lu, et al. 2022a. The 2020–2021 prolonged La Niña evolution in the tropical Pacific. Science China: Earth Sciences, 65: 2248−2266,
    Gao Zongting, Hu Zengzhen, Zheng Fei, et al. 2022b. Single-year and double-year El Niños. Climate Dynamics, 60: 2235−2243,
    Hoerling M P, Kumar A, Zhong Min. 1997. El Niño, La Niña, and the nonlinearity of their teleconnections. Journal of Climate, 10(8): 1769–1786, doi: 10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2
    Hu Zengzhen, Kumar A, Xue Yan, et al. 2014. Why were some La Niñas followed by another La Niña?. Climate Dynamics, 42(3): 1029–1042,
    Huang Boyin, L’Heureux M, Hu Zengzhen, et al. 2016. Ranking the strongest ENSO events while incorporating SST uncertainty. Geophysical Research Letters, 43(17): 9165–9172, doi: 10.1002/2016GL070888
    Huang Boyin, L’Heureux M, Hu Zengzhen, et al. 2020. How significant was the 1877/78 El Niño?. Journal of Climate, 33(11): 4853–4869, doi: 10.1175/JCLI-D-19-0650.1
    Huang Boyin, L’Heureux M, Lawrimore J, et al. 2013. Why did large differences arise in the sea surface temperature datasets across the tropical Pacific during 2012?. Journal of Atmospheric and Oceanic Technology, 30(12): 2944–2953,
    Iwakiri T, Watanabe M. 2020. Multiyear La Niña impact on summer temperature over Japan. Journal of the Meteorological Society of Japan. Ser. II, 98(6): 1245–1260, doi: 10.2151/jmsj.2020-064
    Karori M A, Li Jianping, Jin Feifei. 2013. The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over Southeast China. Journal of Climate, 26(13): 4567–4582, doi: 10.1175/JCLI-D-12-00324.1
    Kessler W S. 2002. Is ENSO a cycle or a series of events?. Geophysical Research Letters, 29(23): 2125,
    Kug J S, An S I, Jin Feifei, et al. 2005. Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophysical Research Letters, 32(5): L05706, doi: 10.1029/2004GL021674
    Li Chun, Ma Hao. 2012. Relationship between ENSO and winter rainfall over Southeast China and its decadal variability. Advances in Atmospheric Sciences, 29(6): 1129–1141, doi: 10.1007/s00376-012-1248-z
    Li Tim, Wang Bin, Wu Bo, et al. 2017. Theories on formation of an anomalous anticyclone in western north Pacific during El Niño: a review. Journal of Meteorological Research, 31(6): 987–1006, doi: 10.1007/s13351-017-7147-6
    Li Tianran, Zhang Renhe, Wen Min. 2015. Impact of ENSO on the precipitation over China in winter half-years. Journal of Tropical Meteorology, 21(2): 161–170
    Liu Fei, Gao Chaochao, Chai Jing, et al. 2022. Tropical volcanism enhanced the east Asian summer monsoon during the last millennium. Nature Communications, 13(1): 3429, doi: 10.1038/s41467-022-31108-7
    Luo Jingjia, Liu Guoqiang, Hendon H, et al. 2017. Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Scientific Reports, 7(1): 2276, doi: 10.1038/s41598-017-01479-9
    McPhaden M J, Zhang Xuebin. 2009. Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophysical Research Letters, 36(13): L13703, doi: 10.1029/2009GL038774
    Ohba M, Ueda H. 2009. Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. Journal of Climate, 22(1): 177–192, doi: 10.1175/2008JCLI2334.1
    Okumura Y M, DiNezio P, Deser C. 2017. Evolving impacts of multiyear La Niña events on atmospheric circulation and U. S. drought. Geophysical Research Letters, 44(22): 11614–11623, doi: 10.1002/2017GL075034
    Okumura Y M, Ohba M, Deser C, et al. 2011. A Proposed mechanism for the asymmetric duration of El Niño and La Niña. Journal of Climate, 24(15): 3822–3829, doi: 10.1175/2011JCLI3999.1
    Raj Deepak S N, Chowdary J S, Dandi A R, et al. 2019. Impact of multiyear La Niña events on the south and east Asian summer monsoon rainfall in observations and CMIP5 models. Climate Dynamics, 52(11): 6989–7011, doi: 10.1007/s00382-018-4561-0
    Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14): 4407, doi: 10.1029/2002JD002670
    Schneider U, Hänsel S, Finger P, et al. 2022. GPCC Full Data Monthly Product Version 2022 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-based and Historical Data. Offenbach: GPCC,
    Slivinski L C, Compo G P, Whitaker J S, et al. 2019. NOAA-CIRES-DOE twentieth century reanalysis version 3, https://rda.ucar.edu/datasets/ds131.3/[2019-12-24/2022-08-17],
    Stuecker M F, Jin Feifei, Timmermann A, et al. 2015. Combination mode dynamics of the anomalous northwest Pacific anticyclone. Journal of Climate, 28(3): 1093–1111, doi: 10.1175/JCLI-D-14-00225.1
    Sun Chenghu, Yang Song. 2012. Persistent severe drought in southern China during winter–spring 2011: large-scale circulation patterns and possible impacting factors. Journal of Geophysical Research: Atmospheres, 117(D10): D10112, doi: 10.1029/2012JD017500
    Wallace J M, Rasmusson E M, Mitchell T P, et al. 1998. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. Journal of Geophysical Research: Oceans, 103(C7): 14241–14259, doi: 10.1029/97JC02905
    Wang Bin, Li Juan, He Qiong. 2017. Variable and robust east Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Advances in Atmospheric Sciences, 34(10): 1235–1248, doi: 10.1007/s00376-017-7016-3
    Wang Chunzai, Picaut J. 2004. Understanding ENSO physics—a review. In: Wang Chunzai, Xie Shangping, Carton J A, eds. Earth’s Climate. Washington: American Geophysical Union, 21–48,
    Wang Bin, Wu Renguang, Fu Xiouhua. 2000. Pacific–east Asian teleconnection: how does ENSO affect east Asian climate?. Journal of Climate, 13(9): 1517–1536,
    Wang Bin, Xiang Baoqiang, Lee J Y. 2013. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United States of America, 110(8): 2718–2722, doi: 10.1073/pnas.1214626110
    Wang Bin, Zhang Qin. 2002. Pacific–East Asian Teleconnection. Part II: How the Philippine Sea Anomalous Anticyclone is Established during El Niño Development. Journal of Climate 15, 3252–3265,
    Wu Renguang, Hu Zengzhen, Kirtman B P. 2003. Evolution of ENSO-related rainfall anomalies in east Asia. Journal of Climate, 16(22): 3742–3758, doi: 10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2
    Wu Bo, Li Tim, Zhou Tianjun. 2010. Asymmetry of atmospheric circulation anomalies over the western north Pacific between El Niño and La Niña. Journal of Climate, 23(18): 4807–4822, doi: 10.1175/2010JCLI3222.1
    Wu Bo, Zhou Tianjun, Li Tim. 2017a. Atmospheric dynamic and thermodynamic processes driving the western north Pacific anomalous anticyclone during El Niño. Part I: maintenance mechanisms. Journal of Climate, 30(23): 9621–9635, doi: 10.1175/JCLI-D-16-0489.1
    Wu Bo, Zhou Tianjun, Li Tim. 2017b. Atmospheric dynamic and thermodynamic processes driving the western north Pacific anomalous anticyclone during El Niño. Part II: formation processes. Journal of Climate, 30(23): 9637–9650, doi: 10.1175/JCLI-D-16-0495.1
    Xie Shangping, Hu Kaiming, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. Journal of Climate, 22(3): 730–747, doi: 10.1175/2008JCLI2544.1
    Xie Shangping, Kosaka Y, Du Yan, et al. 2016. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Advances in Atmospheric Sciences, 33(4): 411–432, doi: 10.1007/s00376-015-5192-6
    Zhang Ronghua, Gao Chuan. 2016. The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event. Science Bulletin, 61(13): 1061–1070, doi: 10.1007/s11434-016-1064-4
    Zhang Ronghua, Gao Chuan, Feng Licheng. 2022. Recent ENSO evolution and its real-time prediction challenges. National Science Review, 9(4): nwac052, doi: 10.1093/nsr/nwac052
    Zhang Wenjun, Li Haiyan, Stuecker M F, et al. 2016. A new understanding of El Niño’s impact over east Asia: dominance of the ENSO combination mode. Journal of Climate, 29(12): 4347–4359, doi: 10.1175/JCLI-D-15-0104.1
    Zhang Renhe, Li Tianran, Wen Min, et al. 2015. Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Climate Dynamics, 45(3): 559–567, doi: 10.1007/s00382-014-2207-4
    Zhang Renhe, Min Qingye, Su Jingzhi. 2017. Impact of El Niño on atmospheric circulations over east Asia and rainfall in China: role of the anomalous western north Pacific anticyclone. Science China: Earth Sciences, 60(6): 1124–1132, doi: 10.1007/s11430-016-9026-x
    Zhang Renhe, Sumi A. 2002. Moisture circulation over east Asia during El Niño episode in northern winter, spring and autumn. Journal of the Meteorological Society of Japan. Ser. II, 80(2): 213–227, doi: 10.2151/jmsj.80.213
    Zhang Renhe, Sumi A, Kimoto M. 1996. Impact of El Niño on the east Asian monsoon: a diagnostic study of the ’86/87 and ’91/92 events. Journal of the Meteorological Society of Japan. Ser. II, 74(1): 49–62, doi: 10.2151/jmsj1965.74.1_49
    Zhang Renhe, Sumi A, Kimoto M. 1999. A diagnostic study of the impact of El Niño on the precipitation in China. Advances in Atmospheric Sciences, 16(2): 229–241, doi: 10.1007/BF02973084
    Zheng Fei, Feng Lisha, Zhu Jiang. 2015. An incursion of off-equatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011. Advances in Atmospheric Sciences, 32(6): 731–742, doi: 10.1007/s00376-014-4080-9
  • 加载中
图(8)
计量
  • 文章访问数:  571
  • HTML全文浏览量:  229
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-27
  • 录用日期:  2023-01-25
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回