ZHANG Tao, GAO Jinyao, CHEN Mei, YANG Chunguo, SHEN Zhongyan, ZHOU Zhiyuan, WU Zhaocai, SUN Yunfan. Mantle melting factors and amagmatic crustal accretion of the Gakkel ridge, Arctic Ocean[J]. Acta Oceanologica Sinica, 2015, 34(6): 42-48. doi: 10.1007/s13131-015-0686-8
Citation: ZHANG Tao, GAO Jinyao, CHEN Mei, YANG Chunguo, SHEN Zhongyan, ZHOU Zhiyuan, WU Zhaocai, SUN Yunfan. Mantle melting factors and amagmatic crustal accretion of the Gakkel ridge, Arctic Ocean[J]. Acta Oceanologica Sinica, 2015, 34(6): 42-48. doi: 10.1007/s13131-015-0686-8

Mantle melting factors and amagmatic crustal accretion of the Gakkel ridge, Arctic Ocean

doi: 10.1007/s13131-015-0686-8
  • Received Date: 2014-05-26
  • Rev Recd Date: 2014-09-10
  • Spreading rate is a primary factor of mantle melting and tectonic behavior of the global mid-ocean ridges. The spreading rate of the Gakkel ridge decreases gradually from west to east. However, the Gakkel ridge can be divided into four thick-and-thin zones with varying crustal thicknesses along ridge axis. This phenomenon indicates that mantle melting of the Gakkel ridge is not a simple function of spreading rate. Mantle temperature, water content, mantle composition, and other factors are important in crustal accretion processes. Based on gravity-derived crustal thickness and wet melting model, we estimate that the mantle potential temperatures of the four zones are 1 270, 1 220, 1 280, and 1 280℃ (assuming that mantle water content equals to global average value), with corresponding mantle water contents of 210, 0, 340, and 280 mg/kg (assuming that mantle potential temperature is 1 260℃), respectivly. The western thinned crust zone is best modeled with low mantle temperature, whereas the other zones are mainly controlled by the enhanced conduction caused by the slower spreading rate. Along the Gakkel ridge, the crustal thickness is consistent with rock samples types. Predominated serpentinized peridotite and basalt are found in the area with crustal thickness <1.5 km and >2.5 km, respectively. The rock samples are including from basalt to peridotite in the area with crustal thickness between 1.5 and 2.5 km. Based on this consistency, the traditional magmatic accretion zone accounted for only 44% and amagmatic accretion accounted for 29% of the Gakkel ridge. The amagmatic accretion is a significant characteristic of the ultra-slow spreading ridge.
  • loading
  • Asimow P D, Langmuir C H. 2003. The importance of water to ocean-ic mantle melting regimes. Nature, 421: 815-820 Behn M D, Boettcher M S, Hirth G. 2007. Thermal structure of ocean-ic transform faults. Geology, 35(4): 307-310
    Cannat M, Sauter D, Bezos A, et al. 2008. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southw-est Indian Ridge. Geochem Geophys Geosyst, 9(4): 144, doi: 10.1029/2007GC001676
    Cannat M, Sauter D, Mendel V, et al. 2006. Modes of seafloor genera-tion at a melt-poor ultraslow-spreading ridge. Geology, 34(7): 605-608
    Chen Y J. 1996. Constraints on melt production rate beneath the mid-ocean ridges based on passive flow models. Pure Appl Geo-phys, 146(34): 589-620
    Coakley B J, Cochran J R. 1998. Gravity evidence of very thin crust at the Gakkel Ridge (Arctic Ocean). Earth Planet Sci Lett, 162(1-4): 81-95
    Davies J H, Bickle M. 1991. A physical model for the volume and com-position of melt produced by hydrous fluxing above subduc-tion zones. Phil Trans: R Soc London, 335(1638): 355-364
    DeMets C, Gordon R G, Argus D F, et al. 1990. Current plate motions. Geophys J Int, 101(2): 425-478
    Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405-412
    Divins D L. 2003. Total Sediment Thickness of the World's Oceans and Marginal Seas. Boulder, CO: NOAA National Geophysical Data Center Edwards M H, Kurras G J, Tolstoy M, et al. 2001. Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge. Nature, 409: 808-812
    Georgen J E, Lin Jian, Dick H J B. 2001. Evidence from gravity anom-alies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth Planet Sci Lett, 187(3-4): 283-300
    Jakobsson M, Mayer L, Coakley B, et al. 2012. The international ba-thymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geo-phys Res Lett, 39(12): L12609, doi: 10.1029/2012GL052219
    Jokat W, Ritzmann O, Schmidt-Aursch M C, et al. 2003. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature, 423(6943): 962-965
    Jokat W, Schmidt-Aursch M C. 2007. Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean. Geophys J Int, 168(3): 983-998
    Kenyon S, Forsberg R, Coakley B. 2008. New gravity field for the Arc-tic. Eos, Transactions American Geophysical Union, 89(32): 289-290
    Langmuir C H, Forsyth D W. 2007. Mantle melting beneath mid-ocean ridges. Oceanography, 20(1): 78-89
    Langmuir C H, Klein E M, Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation be-neath ocean ridges. In: Morgan J P, Blackman D K, Sinton J M, eds. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophys Monogr Ser, 71: 361
    McKenzie D P, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. J Petrol, 29: 625-679
    Michael P J, Langmuir C H, Dick H, et al. 2003. Magmatic and amag-matic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature, 423: 956-961
    Muller M R, Minshull T A, White R S. 2000. Crustal structure of the Southwest Indian Ridge at the Atlantis II fracture zone. J Geo-phys Res, 105(B11): 25809-25828
    Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochem Geophys Geosyst, 9(4): Q04006, doi: 10.1029/2007GC001743
    Oldenburg D W. 1974. The inversion and interpretation of gravity an-omalies. Geophysics, 39(4): 526-536
    Reid I, Jackson H R. 1981. Oceanic spreading rate and crustal thick-ness. Mar Geophys Res, 5(2): 165-172
    Robinson C J, Bickle M J, Minshull T A, et al. 2001. Low degree melt-ing under the Southwest Indian Ridge: the roles of mantle tem-perature, conductive cooling and wet melting. Earth Planet Sci Lett, 188(3-4): 383-398
    Taylor P T, Kovacs L C, Vogt P R, et al. 1981. Detailed aeromagnetic investigation of the Arctic Basin: 2. J Geophys Res, 86(B7): 6323-6333
    Wessel P, Smith W H F. 1995. New version of the Generic Mapping Tools released. EOS Trans AGU, 76: 329
    White R S, McKenzie D, O'Nions R K. 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res, 97(B13): 19683-19715
    Zhang Tao, Lin Jian, Gao Jinyao. 2013. Magmatism and tectonic pro-cesses in Area a hydrothermal vent on the Southwest Indian Ridge. Sci China: Earth Sci, 56(12): 2186-2197, doi: 10.1007/s11430-013-4630-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1967) PDF downloads(844) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return