Volume 39 Issue 12
Jan.  2021
Turn off MathJax
Article Contents
Chuanjiang Huang, Fangli Qiao, Hongyu Ma. Noise reduction of acoustic Doppler velocimeter data based on Kalman filtering and autoregressive moving average models[J]. Acta Oceanologica Sinica, 2020, 39(12): 106-113. doi: 10.1007/s13131-020-1641-x
Citation: Chuanjiang Huang, Fangli Qiao, Hongyu Ma. Noise reduction of acoustic Doppler velocimeter data based on Kalman filtering and autoregressive moving average models[J]. Acta Oceanologica Sinica, 2020, 39(12): 106-113. doi: 10.1007/s13131-020-1641-x

Noise reduction of acoustic Doppler velocimeter data based on Kalman filtering and autoregressive moving average models

doi: 10.1007/s13131-020-1641-x
Funds:  The National Key Research and Development Program of China under contract No. 2017YFC1404000; the Basic Scientific Fund for National Public Research Institutes of China under contract No. 2018S03; the National Natural Science Foundation of China under contract Nos 41776038 and 41821004.
More Information
  • Corresponding author: Email: qiaofl@fio.org.cn
  • Received Date: 2020-02-27
  • Accepted Date: 2020-05-30
  • Available Online: 2021-04-21
  • Publish Date: 2020-12-25
  • Oceanic turbulence measurements made by an acoustic Doppler velocimeter (ADV) suffer from noise that potentially affects the estimates of turbulence statistics. This study examines the abilities of Kalman filtering and autoregressive moving average models to eliminate noise in ADV velocity datasets of laboratory experiments and offshore observations. Results show that the two methods have similar performance in ADV de-noising, and both effectively reduce noise in ADV velocities, even in cases of high noise. They eliminate the noise floor at high frequencies of the velocity spectra, leading to a longer range that effectively fits the Kolmogorov −5/3 slope at mid-range frequencies. After de-noising adopting the two methods, the values of the mean velocity are almost unchanged, while the root-mean-square horizontal velocities and thus turbulent kinetic energy decrease appreciably in these experiments. The Reynolds stress is also affected by high noise levels, and de-noising thus reduces uncertainties in estimating the Reynolds stress.
  • loading
  • [1]
    Bian Changwei, Liu Zhiyu, Huang Yongxiang, et al. 2018. On estimating turbulent Reynolds stress in wavy aquatic environment. Journal of Geophysical Research: Oceans, 123(4): 3060–3071. doi: 10.1002/2017JC013230
    Bluteau C E, Jones N L, Ivey G N. 2011. Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnology and Oceanography: Methods, 9(7): 302–321. doi: 10.4319/lom.2011.9.302
    Chang Yang, Chen Yining, Li Yan. 2019. Flow modification associated with mangrove trees in a macro-tidal flat, southern China. Acta Oceanologica Sinica, 38(2): 1–10. doi: 10.1007/s13131-018-1163-y
    Chanson H, Trevethan M, Koch C. 2007. Discussion of “Turbulence measurements with acoustic Doppler velocimeters” by Carlos M. Garcìa, Mariano I. Cantero, Yarko Niño, and Marcelo H. Garcìa. Journal of Hydraulic Engineering, 133(11): 1283–1286
    Dilling S, MacVicar B J. 2017. Cleaning high-frequency velocity profile data with autoregressive moving average (ARMA) models. Flow Measurement and Instrumentation, 54: 68–81. doi: 10.1016/j.flowmeasinst.2016.12.005
    Durgesh V, Thomson J, Richmond M C, et al. 2014. Noise correction of turbulent spectra obtained from acoustic doppler velocimeters. Flow Measurement and Instrumentation, 37: 29–41. doi: 10.1016/j.flowmeasinst.2014.03.001
    Elgar S, Raubenheimer B, Guza R T. 2005. Quality control of acoustic Doppler velocimeter data in the surfzone. Measurement Science Technology, 16(10): 1889–1893. doi: 10.1088/0957-0233/16/10/002
    Fabozzi F J, Focardi S M, Rachev S T, et al. 2014. The Basics of Financial Econometrics: Tools, Concepts, and Asset Management Applications. New Jersey: John Wiley & Sons, Inc, 171–190
    Feddersen F. 2010. Quality controlling surf zone acoustic Doppler velocimeter observations to estimate the turbulent dissipation rate. Journal of Atmospheric and Oceanic Technology, 27(12): 2039–2055. doi: 10.1175/2010JTECHO783.1
    García C M, Cantero M I, Niño Y, et al. 2005. Turbulence measurements with acoustic Doppler velocimeters. Journal of Hydraulic Engineering, 131(12): 1062–1073. doi: 10.1061/(ASCE)0733-9429(2005)131:12(1062)
    Goring D G, Nikora V I. 2002. Despiking acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 128(1): 117–126. doi: 10.1061/(ASCE)0733-9429(2002)128:1(117)
    Huang Chuanjiang, Ma Hongyu, Guo Jingsong, et al. 2018. Calculation of turbulent dissipation rate with acoustic Doppler velocimeter. Limnology and Oceanography: Methods, 16(5): 265–272. doi: 10.1002/lom3.10243
    Hurther D, Lemmin U. 2001. A correction method for turbulence measurements with a 3D acoustic Doppler velocity profiler. Journal of Atmospheric and Oceanic Technology, 18(3): 446–458. doi: 10.1175/1520-0426(2001)018<0446:ACMFTM>2.0.CO;2
    Islam M R, Zhu D Z. 2013. Kernel density-based algorithm for despiking ADV data. Journal of Hydraulic Engineering, 139(7): 785–793. doi: 10.1061/(ASCE)HY.1943-7900.0000734
    Kalman R E. 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1): 35–45. doi: 10.1115/1.3662552
    Khorsandi B, Mydlarski L, Gaskin S. 2012. Noise in turbulence measurements using acoustic Doppler velocimetry. Journal of Hydraulic Engineering, 138(10): 829–838. doi: 10.1061/(ASCE)HY.1943-7900.0000589
    Kirchner J W. 2005. Aliasing in 1/f α noise spectra: Origins, consequences, and remedies. Physical Review E, 71(6): 066110. doi: 10.1103/PhysRevE.71.066110
    Lemmin U, Lhermitte R. 1999. ADV measurements of turbulence: Can we improve their interpretation?. Journal of Hydraulic Engineering, 125(9): 987–988. doi: 10.1061/(ASCE)0733-9429(1999)125:9(987)
    McLelland S J, Nicholas A P. 2000. A new method for evaluating errors in high-frequency ADV measurements. Hydrological Processes, 14(2): 351–366. doi: 10.1002/(SICI)1099-1085(20000215)14:2<351::AID-HYP963>3.0.CO;2-K
    Moore B. 2012. Kalman Filter Package, Version Implements Kalman filter, extended Kalman filter, dual Kalman filter, and square root Kalman filters. www.mathworks.com/matlabcentral/fileexchange/38302-kalman-filter-package [2012-09-24/2019-09-03]
    Mori N, Suzuki T, Kakuno S. 2007. Noise of acoustic Doppler velocimeter data in bubbly flows. Journal of Engineering Mechanics, 133(1): 122–125. doi: 10.1061/(ASCE)0733-9399(2007)133:1(122)
    Neusser K. 2016. Time Series Econometrics. Switzerland: Springer International Publishing, 25–44
    Nikora V I, Goring D G. 1998. ADV measurements of turbulence: Can we improve their interpretation?. Journal of Hydraulic Engineering, 124(6): 630–634. doi: 10.1061/(ASCE)0733-9429(1998)124:6(630)
    Parsheh M, Sotiropoulos F, Porte-Agel F. 2010. Estimation of power spectra of acoustic-Doppler velocimetry data contaminated with intermittent spikes. Journal of Hydraulic Engineering, 136(6): 368–378. doi: 10.1061/(ASCE)HY.1943-7900.0000202
    Pope S B. 2000. Turbulent Flows. Cambridge, UK: Cambridge University Press, 219–242
    Qi Yongfeng, Shang Xiaodong, Chen Guiying, et al. 2020. Eddy covariance measurements of turbulent fluxes in the surf zone. Acta Oceanologica Sinica, 39(3): 63–72. doi: 10.1007/s13131-020-1562-8
    Qiao Fangli, Yuan Yeli, Deng Jia, et al. 2016. Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065): 20150201. doi: 10.1098/rsta.2015.0201
    Saddoughi S G, Veeravalli S V. 1994. Local isotropy in turbulent boundary layers at high Reynolds number. Journal of Fluid Mechanics, 268: 333–372. doi: 10.1017/S0022112094001370
    SonTek. 2001. Acoustic Doppler velocimeter principles of operation. SonTek/YSI Technical Notes. San Diego: SonTek, 1–14
    Variano E A, Cowen E A. 2008. A random-jet-stirred turbulence tank. Journal of Fluid Mechanics, 604: 1–32. doi: 10.1017/S0022112008000645
    Voulgaris G, Trowbridge J H. 1998. Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. Journal of Atmospheric and Oceanic Technology, 15(1): 272–289. doi: 10.1175/1520-0426(1998)015<0272:EOTADV>2.0.CO;2
    Wahl T L. 2003. Discussion of “Despiking acoustic Doppler velocimeter data” by Derek G. Goring and Vladimir I. Nikora. Journal of Hydraulic Engineering, 129(6): 484–487
    Welch G, Bishop G. 1995. An introduction to the Kalman filter. Technical report. Chapel Hill, NC, United States: University of North Carolina at Chapel Hill, 1–16
    Wolk F, Yamazaki H, Seuront L, et al. 2002. A new free-fall profiler for measuring biophysical microstructure. Journal of Atmospheric and Oceanic Technology, 19(5): 780–793. doi: 10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (249) PDF downloads(21) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint