Volume 39 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Ruigang Ma, Haizhang Yang, Xiaobo Jin, Zhao Zhao, Gongcheng Zhang, Chuanlian Liu. Calcareous nannofossil changes in the Early Oligocene linked to nutrient and atmospheric CO2[J]. Acta Oceanologica Sinica, 2020, 39(10): 70-80. doi: 10.1007/s13131-020-1661-6
Citation: Ruigang Ma, Haizhang Yang, Xiaobo Jin, Zhao Zhao, Gongcheng Zhang, Chuanlian Liu. Calcareous nannofossil changes in the Early Oligocene linked to nutrient and atmospheric CO2[J]. Acta Oceanologica Sinica, 2020, 39(10): 70-80. doi: 10.1007/s13131-020-1661-6

Calcareous nannofossil changes in the Early Oligocene linked to nutrient and atmospheric CO2

doi: 10.1007/s13131-020-1661-6
Funds:  The National Science and Technology Major Project of the Ministry of Science and Technology of China under contract No. 2016ZX05026007-03; the National Natural Science Foundation of China under contract Nos 41876046 and 41930536.
More Information
  • Corresponding author: E-mail: liucl@tongji.edu.cn
  • Received Date: 2020-03-18
  • Accepted Date: 2020-06-03
  • Available Online: 2020-12-28
  • Publish Date: 2020-10-25
  • Rapid changes on nutrient supply and CO2 concentration that occurred in the northern South China Sea (SCS) during the Early Oligocene, provides an ideal natural laboratory, allowing us to peer into the coccolithophores’ physiology in the geological records. In this study, we established a new nannofossil assemblage index, termed as E* ratio, which is calculated by the relative abundance of eutrophic taxa and meso-oligotrophic taxa (${E^*}=\frac{e}{{e + c}}\times100$, where e is eutrophic taxa, and c is meso-oligotrophic taxa). Eutrophic taxa include small Reticulofenestra, Reticulofenestra lockeri group, Reticulofenestra bisecta group and Coccolithus pelagicus group, while meso-oligotrophic taxa include Cyclicargolithus spp. The E* ratio is well correlated with nutrient proxy during the Early Oligocene, while with different covarying patterns under the higher and lower CO2 condition. By comparing the assemblage changes to the published data, we suggest that coccolithophores may change the way they use carbon source and nutrient with the decline of CO2. Furthermore, this implies a possible initiation of the carbon concentrating mechanism.
  • loading
  • [1]
    Aubry M P. 1992. Paleogene calcareous nannofossils from the Kerguelen Plateau, Leg 120. In: Wise S, Schlich R, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 120: 471–491
    Aubry M P. 2007. A major Pliocene coccolithophore turnover: Change in morphological strategy in the photic zone. In: Monechi S, Coccioni R, Rampino M, eds. Large Ecosystem Perturbations: Causes and Consequences. The Geological Society of America, Special Paper, 424: 25–51
    Aubry M P. 2009. A sea of Lilliputians. Palaeogeography, Palaeoclimatology, Palaeoecology, 284(1–2): 88–113. doi: 10.1016/j.palaeo.2009.08.020
    Aubry M P, Bord D. 2009. Reshuffling the cards in the photic zone at the Eocene/Oligocene boundary. In: Koeberl C, Montanari A, eds. The Late Eocene Earth: Hothouse, Icehouse, and Impacts. The Geological Society of America, Special Paper, 452: 279–301
    Auer G, Piller W E, Harzhauser M. 2014. High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene. Marine Micropaleontology, 111: 53–65. doi: 10.1016/j.marmicro.2014.06.005
    Bach L T, Mackinder L C M, Schulz K G, et al. 2013. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199(1): 121–134. doi: 10.1111/nph.12225
    Bach L T, Riebesell U, Gutowska M A, et al. 2015. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135: 125–138. doi: 10.1016/j.pocean.2015.04.012
    Badger M R, Andrews T J, Whitney S M, et al. 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Canadian Journal of Botany, 76(6): 1052–1071. doi: 10.1139/b98-074
    Bolton C T, Stoll H M. 2013. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature, 500(7464): 558–562. doi: 10.1038/nature12448
    Bordiga M, Bartol M, Henderiks J. 2015. Absolute nannofossil abundance estimates: Quantifying the pros and cons of different techniques. Revue de Micropaléontologie, 58(3): 155–165. doi: 10.1016/j.revmic.2015.05.002
    Bown P R, Lees J A, Young J R. 2004. Calcareous nannoplankton evolution and diversity through time. In: Thierstein H R, Young J R, eds. Coccolithophores. Berlin, Heidelberg: Springer, 481–508
    Cachão M, Moita M T. 2000. Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia. Marine Micropaleontology, 39(1–4): 131–155. doi: 10.1016/S0377-8398(00)00018-9
    Calvert S E, Pedersen T F. 2007. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Developments in Marine Geology, 1: 567–644. doi: 10.1016/S1572-5480(07)01019-6
    Cherchi A, Alessandri A, Masina S, et al. 2011. Effects of increased CO2 levels on monsoons. Climate Dynamics, 37(1–2): 83–101. doi: 10.1007/s00382-010-0801-7
    Clift P D, Wan Shiming, Blusztajn J. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: A review of competing proxies. Earth-Science Reviews, 130: 86–102. doi: 10.1016/j.earscirev.2014.01.002
    Cramer B S, Miller K G, Barrett P J, et al. 2011. Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. Journal of Geophysical Research, 116(C12): C12023. doi: 10.1029/2011JC007255
    Cramer B S, Toggweiler J R, Wright J D, et al. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24(4): PA4216
    Dunkley Jones T, Bown P R, Pearson P N, et al. 2008. Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production. Paleoceanography, 23(4): PA4204
    Feng Yuanyuan, Roleda M Y, Armstrong E, et al. 2017. Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 62(2): 519–540. doi: 10.1002/lno.10442
    Filippelli G M. 2002. The global phosphorus cycle. Reviews in Mineralogy and Geochemistry, 48(1): 391–425. doi: 10.2138/rmg.2002.48.10
    Fioroni C, Villa G, Persico D, et al. 2015. Middle Eocene-Lower Oligocene calcareous nannofossil biostratigraphy and paleoceanographic implications from Site 711(equatorial Indian Ocean). Marine Micropaleontology, 118: 50–62. doi: 10.1016/j.marmicro.2015.06.001
    Fernando A G S, Peleo-Alampay A M, Wiesner M G. 2007. Calcareous nannofossils in surface sediments of the eastern and western South China Sea. Marine Micropaleontology, 66(1): 1–26. doi: 10.1016/j.marmicro.2007.07.003
    Flores J A, Sierro F J, Raffi I. 1995. Evolution of the calcareous nannofossil assemblage as a response to the paleoceanographic changes in the eastern equatorial Pacific Ocean from 4 to 2 Ma (Leg 138, Sites 849 and 852). In: Pisias N G, Mayer L A, Janecek T R, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 138: 163-176
    Gaillardet J, Dupré B, Louvat P, et al. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1–4): 3–30. doi: 10.1016/S0009-2541(99)00031-5
    Haq B U, Lohmann G P. 1976. Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean. Marine Micropaleontology, 1: 119–194. doi: 10.1016/0377-8398(76)90008-6
    Henderiks J, Pagani M. 2008. Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth and Planetary Science Letters, 269(3–4): 576–584. doi: 10.1016/j.jpgl.2008.03.016
    Huber M, Goldner A. 2012. Eocene monsoons. Journal of Asian Earth Sciences, 44: 3–23. doi: 10.1016/j.jseaes.2011.09.014
    Jatiningrum R S, Sato T. 2017. Sea-surface dynamics changes in the Subpolar North Atlantic Ocean (IODP Site U1314) during Late Pliocene climate transition based on calcareous Nannofossil observation. Open Journal of Geology, 7(10): 1538–1551. doi: 10.4236/ojg.2017.710103
    Jian Zhimin, Larsen H C, Alvarez Zarikian C A, et al. 2018. Expedition 368 Preliminary Report: South China Sea Rifted Margin. Texas: International Ocean Discovery Program, 1–54
    Jian Zhimin, Jin Haiyan, Kaminski M A, et al. 2019. Discovery of the marine Eocene in the northern South China Sea. National Science Review, 6(5): 881–885. doi: 10.1093/nsr/nwz084
    Jin Xiaobo, Liu Chuanlian, Poulton A J, et al. 2016. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content. Biogeosciences, 13(16): 4843–4861. doi: 10.5194/bg-13-4843-2016
    Koch C, Young J R. 2007. A simple weighing and dilution technique for determining absolute abundances of coccoliths from sediment samples. Journal of Nannoplankton Research, 29(1): 67–69
    Krumhardt K M, Lovenduski N S, Iglesias-Rodriguez M D, et al. 2017. Coccolithophore growth and calcification in a changing ocean. Progress in Oceanography, 159: 276–295. doi: 10.1016/j.pocean.2017.10.007
    Larsen H C, Mohn G, Nirrengarten M, et al. 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11(10): 782–789. doi: 10.1038/s41561-018-0198-1
    Li Qianyu, Wang Pinxian, Zhao Quanhong, et al. 2006. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea. Marine Geology, 230(3–4): 217–235. doi: 10.1016/j.margeo.2006.05.006
    Licht A, van Cappelle M, Abels H A, et al. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513(7519): 501–506. doi: 10.1038/nature13704
    Liu Xiaodong, Guo Qingchun, Guo Zhengtang, et al. 2015. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift?. National Science Review, 2(4): 403–416. doi: 10.1093/nsr/nwv068
    Liu Zhonghui, Pagani M, Zinniker D, et al. 2009. Global cooling during the eocene-oligocene climate transition. Science, 323(5918): 1187–1190. doi: 10.1126/science.1166368
    Ma Ruigang, Liu Chuanlian, Li Qianyu, et al. 2019. Calcareous nannofossil changes in response to the spreading of the South China Sea basin during Eocene-Oligocene. Journal of Asian Earth Sciences, 184: 103963. doi: 10.1016/j.jseaes.2019.103963
    Martini E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A, ed. Proceedings of the 2nd Planktonic Conference, Roma. Tecnoscienza, 2: 739–785
    McKay C L, Groeneveld J, Filipsson H L, et al. 2015. A comparison of benthic foraminiferal Mn/Ca and sedimentary Mn/Al as proxies of relative bottom-water oxygenation in the low-latitude NE Atlantic upwelling system. Biogeosciences, 12(18): 5415–5428. doi: 10.5194/bg-12-5415-2015
    Müller M N, Antia A N, LaRoche J. 2008. Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 53(2): 506–512. doi: 10.4319/lo.2008.53.2.0506
    Müller M, Trull T W, Hallegraeff G M. 2017. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi. The ISME Journal, 11(8): 1777–1787. doi: 10.1038/ismej.2017.53
    Neretin L N, Pohl C, Jost G, et al. 2003. Manganese cycling in the Gotland Deep, Baltic Sea. Marine Chemistry, 82(3–4): 125–143. doi: 10.1016/S0304-4203(03)00048-3
    Newsam C, Bown P R, Wade B S, et al. 2017. Muted calcareous nannoplankton response at the Middle/Late Eocene Turnover event in the western North Atlantic Ocean. Newsletters on Stratigraphy, 50(3): 297–309. doi: 10.1127/nos/2016/0306
    Pagani M, Huber M, Liu Zhonghui, et al. 2011. The role of carbon dioxide during the onset of Antarctic glaciation. Science, 334(6060): 1261–1264. doi: 10.1126/science.1203909
    Pagani M, Zachos J C, Freeman K H, et al. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309(5734): 600–603. doi: 10.1126/science.1110063
    Perrin L, Probert I, Langer G, et al. 2016. Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores. Biogeosciences, 13(21): 5983–6001. doi: 10.5194/bg-13-5983-2016
    Persico D, Villa G. 2004. Eocene-Oligocene calcareous nannofossils from Maud Rise and Kerguelen Plateau (Antarctica): paleoecological and paleoceanographic implications. Marine Micropaleontology, 52(1–4): 153–179. doi: 10.1016/j.marmicro.2004.05.002
    Plancq J, Mattioli E, Henderiks J, et al. 2013. Global shifts in Noelaerhabdaceae assemblages during the late Oligocene-early Miocene. Marine Micropaleontology, 103: 40–50. doi: 10.1016/j.marmicro.2013.07.004
    Poulton A J, Adey T R, Balch W M, et al. 2007. Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5–7): 538–557. doi: 10.1016/j.dsr2.2006.12.003
    Quan Cheng, Liu Zhonghui, Utescher T, et al. 2014. Revisiting the Paleogene climate pattern of East Asia: A synthetic review. Earth-Science Reviews, 139: 213–230. doi: 10.1016/j.earscirev.2014.09.005
    Raffi I, Agnini C, Backman J, et al. 2016. A Cenozoic calcareous nannofossil biozonation from low and middle latitudes: a synthesis. Journal of Nannoplankton Research, 36(2): 121–132
    Reinfelder J R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science, 3: 291–315. doi: 10.1146/annurev-marine-120709-142720
    Riebesell U. 2004. Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography, 60(4): 719–729. doi: 10.1007/s10872-004-5764-z
    Rost B, Riebesell U, Burkhardt S, et al. 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography, 48(1): 55–67. doi: 10.4319/lo.2003.48.1.0055
    Schmitz B. 1987. The TiO2/Al2O3 ratio in the Cenozoic Bengal Abyssal Fan sediments and its use as a paleostream energy indicator. Marine Geology, 76: 195–206. doi: 10.1016/0025-3227(87)90029-6
    Shimmield G B, Mowbray S R. 1991. The inorganic geochemical record of the northwest Arabian Sea: A history of productivity variation over the last 400 ky from site 722 and 724. In: Prell W, Niitsuma, eds. Proceedings of Ocean Drilling Program, Scientific Results, 117: 409–429
    Sun Xiangjun, Wang Pinxian. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3–4): 181–222. doi: 10.1016/j.palaeo.2005.03.005
    Tangunan D N, Baumann K H, Just J, et al. 2018. The last 1 million years of the extinct genus Discoaster: Plio-Pleistocene environment and productivity at Site U1476(Mozambique Channel). Palaeogeography, Palaeoclimatology, Palaeoecology, 505: 187–197. doi: 10.1016/j.palaeo.2018.05.043
    Toffanin F, Agnini C, Fornaciari E, et al. 2011. Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: Clues from the central-western Tethys (Alano section, NE Italy). Marine Micropaleontology, 81(1–2): 22–31. doi: 10.1016/j.marmicro.2011.07.002
    Tribovillard N, Algeo T J, Lyons T, et al. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2): 12–32. doi: 10.1016/j.chemgeo.2006.02.012
    Villa G, Fioroni C, Pea L, et al. 2008. Middle Eocene-late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748. Marine Micropaleontology, 69(2): 173–192. doi: 10.1016/j.marmicro.2008.07.006
    Wan Shiming, Clift P D, Zhao Debo, et al. 2017. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2. Geochimica et Cosmochimica Acta, 200: 123–144. doi: 10.1016/j.gca.2016.12.010
    Wang Pinxian. 1999. Response of Western Pacific marginal seas to glacial cycles: Paleoceanographic and sedimentological feature. Marine Geology, 156(1–4): 5–39. doi: 10.1016/S0025-3227(98)00172-8
    Wu Jiawang, Böning P, Pahnke K, et al. 2016. Unraveling North-African riverine and eolian contributions to central Mediterranean sediments during Holocene sapropel S1 formation. Quaternary Science Reviews, 152: 31–48. doi: 10.1016/j.quascirev.2016.09.029
    Wu Guoxuan, Qin Jungan, Mao Shaozhi. 2003. Deep-water Oligocene pollen record from South China Sea. Chinese Science Bulletin, 48(22): 2511–2515
    Young J R, Bown P R, Lees J A. 2018. Nannotax3. International Nannoplankton Association. http://ina.tmsoc.org/Nannotax3 [2007-01-01/2019-01-01]
    Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686–693. doi: 10.1126/science.1059412
    Zhang Yige, Pagani M, Liu Zhonghui, et al. 2013. A 40-million-year history of atmospheric CO2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001): 20130096. doi: 10.1098/rsta.2013.0096
    Zhang Gongcheng, Wang Pujun, Wu Jingfu, et al. 2015. Tectonic cycle of marginal oceanic basin: A new evolution model of the South China Sea. Earth Science Frontiers (in Chinese), 22(3): 27–37
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (89) PDF downloads(5) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint