Volume 39 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Ruigang Ma, Haizhang Yang, Xiaobo Jin, Zhao Zhao, Gongcheng Zhang, Chuanlian Liu. Calcareous nannofossil changes in the Early Oligocene linked to nutrient and atmospheric CO2[J]. Acta Oceanologica Sinica, 2020, 39(10): 70-80. doi: 10.1007/s13131-020-1661-6
Citation: Ruigang Ma, Haizhang Yang, Xiaobo Jin, Zhao Zhao, Gongcheng Zhang, Chuanlian Liu. Calcareous nannofossil changes in the Early Oligocene linked to nutrient and atmospheric CO2[J]. Acta Oceanologica Sinica, 2020, 39(10): 70-80. doi: 10.1007/s13131-020-1661-6

Calcareous nannofossil changes in the Early Oligocene linked to nutrient and atmospheric CO2

doi: 10.1007/s13131-020-1661-6
Funds:  The National Science and Technology Major Project of the Ministry of Science and Technology of China under contract No. 2016ZX05026007-03; the National Natural Science Foundation of China under contract Nos 41876046 and 41930536.
More Information
  • Corresponding author: E-mail: liucl@tongji.edu.cn
  • Received Date: 2020-03-18
  • Accepted Date: 2020-06-03
  • Available Online: 2020-12-28
  • Publish Date: 2020-10-25
  • Rapid changes on nutrient supply and CO2 concentration that occurred in the northern South China Sea (SCS) during the Early Oligocene, provides an ideal natural laboratory, allowing us to peer into the coccolithophores’ physiology in the geological records. In this study, we established a new nannofossil assemblage index, termed as E* ratio, which is calculated by the relative abundance of eutrophic taxa and meso-oligotrophic taxa (${E^*}=\frac{e}{{e + c}}\times100$, where e is eutrophic taxa, and c is meso-oligotrophic taxa). Eutrophic taxa include small Reticulofenestra, Reticulofenestra lockeri group, Reticulofenestra bisecta group and Coccolithus pelagicus group, while meso-oligotrophic taxa include Cyclicargolithus spp. The E* ratio is well correlated with nutrient proxy during the Early Oligocene, while with different covarying patterns under the higher and lower CO2 condition. By comparing the assemblage changes to the published data, we suggest that coccolithophores may change the way they use carbon source and nutrient with the decline of CO2. Furthermore, this implies a possible initiation of the carbon concentrating mechanism.
  • loading
  • [1]
    Aubry M P. 1992. Paleogene calcareous nannofossils from the Kerguelen Plateau, Leg 120. In: Wise S, Schlich R, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 120: 471–491
    [2]
    Aubry M P. 2007. A major Pliocene coccolithophore turnover: Change in morphological strategy in the photic zone. In: Monechi S, Coccioni R, Rampino M, eds. Large Ecosystem Perturbations: Causes and Consequences. The Geological Society of America, Special Paper, 424: 25–51
    [3]
    Aubry M P. 2009. A sea of Lilliputians. Palaeogeography, Palaeoclimatology, Palaeoecology, 284(1–2): 88–113. doi: 10.1016/j.palaeo.2009.08.020
    [4]
    Aubry M P, Bord D. 2009. Reshuffling the cards in the photic zone at the Eocene/Oligocene boundary. In: Koeberl C, Montanari A, eds. The Late Eocene Earth: Hothouse, Icehouse, and Impacts. The Geological Society of America, Special Paper, 452: 279–301
    [5]
    Auer G, Piller W E, Harzhauser M. 2014. High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene. Marine Micropaleontology, 111: 53–65. doi: 10.1016/j.marmicro.2014.06.005
    [6]
    Bach L T, Mackinder L C M, Schulz K G, et al. 2013. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199(1): 121–134. doi: 10.1111/nph.12225
    [7]
    Bach L T, Riebesell U, Gutowska M A, et al. 2015. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135: 125–138. doi: 10.1016/j.pocean.2015.04.012
    [8]
    Badger M R, Andrews T J, Whitney S M, et al. 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Canadian Journal of Botany, 76(6): 1052–1071. doi: 10.1139/b98-074
    [9]
    Bolton C T, Stoll H M. 2013. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature, 500(7464): 558–562. doi: 10.1038/nature12448
    [10]
    Bordiga M, Bartol M, Henderiks J. 2015. Absolute nannofossil abundance estimates: Quantifying the pros and cons of different techniques. Revue de Micropaléontologie, 58(3): 155–165. doi: 10.1016/j.revmic.2015.05.002
    [11]
    Bown P R, Lees J A, Young J R. 2004. Calcareous nannoplankton evolution and diversity through time. In: Thierstein H R, Young J R, eds. Coccolithophores. Berlin, Heidelberg: Springer, 481–508
    [12]
    Cachão M, Moita M T. 2000. Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia. Marine Micropaleontology, 39(1–4): 131–155. doi: 10.1016/S0377-8398(00)00018-9
    [13]
    Calvert S E, Pedersen T F. 2007. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Developments in Marine Geology, 1: 567–644. doi: 10.1016/S1572-5480(07)01019-6
    [14]
    Cherchi A, Alessandri A, Masina S, et al. 2011. Effects of increased CO2 levels on monsoons. Climate Dynamics, 37(1–2): 83–101. doi: 10.1007/s00382-010-0801-7
    [15]
    Clift P D, Wan Shiming, Blusztajn J. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: A review of competing proxies. Earth-Science Reviews, 130: 86–102. doi: 10.1016/j.earscirev.2014.01.002
    [16]
    Cramer B S, Miller K G, Barrett P J, et al. 2011. Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. Journal of Geophysical Research, 116(C12): C12023. doi: 10.1029/2011JC007255
    [17]
    Cramer B S, Toggweiler J R, Wright J D, et al. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24(4): PA4216
    [18]
    Dunkley Jones T, Bown P R, Pearson P N, et al. 2008. Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production. Paleoceanography, 23(4): PA4204
    [19]
    Feng Yuanyuan, Roleda M Y, Armstrong E, et al. 2017. Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 62(2): 519–540. doi: 10.1002/lno.10442
    [20]
    Filippelli G M. 2002. The global phosphorus cycle. Reviews in Mineralogy and Geochemistry, 48(1): 391–425. doi: 10.2138/rmg.2002.48.10
    [21]
    Fioroni C, Villa G, Persico D, et al. 2015. Middle Eocene-Lower Oligocene calcareous nannofossil biostratigraphy and paleoceanographic implications from Site 711(equatorial Indian Ocean). Marine Micropaleontology, 118: 50–62. doi: 10.1016/j.marmicro.2015.06.001
    [22]
    Fernando A G S, Peleo-Alampay A M, Wiesner M G. 2007. Calcareous nannofossils in surface sediments of the eastern and western South China Sea. Marine Micropaleontology, 66(1): 1–26. doi: 10.1016/j.marmicro.2007.07.003
    [23]
    Flores J A, Sierro F J, Raffi I. 1995. Evolution of the calcareous nannofossil assemblage as a response to the paleoceanographic changes in the eastern equatorial Pacific Ocean from 4 to 2 Ma (Leg 138, Sites 849 and 852). In: Pisias N G, Mayer L A, Janecek T R, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 138: 163-176
    [24]
    Gaillardet J, Dupré B, Louvat P, et al. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1–4): 3–30. doi: 10.1016/S0009-2541(99)00031-5
    [25]
    Haq B U, Lohmann G P. 1976. Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean. Marine Micropaleontology, 1: 119–194. doi: 10.1016/0377-8398(76)90008-6
    [26]
    Henderiks J, Pagani M. 2008. Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth and Planetary Science Letters, 269(3–4): 576–584. doi: 10.1016/j.jpgl.2008.03.016
    [27]
    Huber M, Goldner A. 2012. Eocene monsoons. Journal of Asian Earth Sciences, 44: 3–23. doi: 10.1016/j.jseaes.2011.09.014
    [28]
    Jatiningrum R S, Sato T. 2017. Sea-surface dynamics changes in the Subpolar North Atlantic Ocean (IODP Site U1314) during Late Pliocene climate transition based on calcareous Nannofossil observation. Open Journal of Geology, 7(10): 1538–1551. doi: 10.4236/ojg.2017.710103
    [29]
    Jian Zhimin, Larsen H C, Alvarez Zarikian C A, et al. 2018. Expedition 368 Preliminary Report: South China Sea Rifted Margin. Texas: International Ocean Discovery Program, 1–54
    [30]
    Jian Zhimin, Jin Haiyan, Kaminski M A, et al. 2019. Discovery of the marine Eocene in the northern South China Sea. National Science Review, 6(5): 881–885. doi: 10.1093/nsr/nwz084
    [31]
    Jin Xiaobo, Liu Chuanlian, Poulton A J, et al. 2016. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content. Biogeosciences, 13(16): 4843–4861. doi: 10.5194/bg-13-4843-2016
    [32]
    Koch C, Young J R. 2007. A simple weighing and dilution technique for determining absolute abundances of coccoliths from sediment samples. Journal of Nannoplankton Research, 29(1): 67–69
    [33]
    Krumhardt K M, Lovenduski N S, Iglesias-Rodriguez M D, et al. 2017. Coccolithophore growth and calcification in a changing ocean. Progress in Oceanography, 159: 276–295. doi: 10.1016/j.pocean.2017.10.007
    [34]
    Larsen H C, Mohn G, Nirrengarten M, et al. 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11(10): 782–789. doi: 10.1038/s41561-018-0198-1
    [35]
    Li Qianyu, Wang Pinxian, Zhao Quanhong, et al. 2006. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea. Marine Geology, 230(3–4): 217–235. doi: 10.1016/j.margeo.2006.05.006
    [36]
    Licht A, van Cappelle M, Abels H A, et al. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513(7519): 501–506. doi: 10.1038/nature13704
    [37]
    Liu Xiaodong, Guo Qingchun, Guo Zhengtang, et al. 2015. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift?. National Science Review, 2(4): 403–416. doi: 10.1093/nsr/nwv068
    [38]
    Liu Zhonghui, Pagani M, Zinniker D, et al. 2009. Global cooling during the eocene-oligocene climate transition. Science, 323(5918): 1187–1190. doi: 10.1126/science.1166368
    [39]
    Ma Ruigang, Liu Chuanlian, Li Qianyu, et al. 2019. Calcareous nannofossil changes in response to the spreading of the South China Sea basin during Eocene-Oligocene. Journal of Asian Earth Sciences, 184: 103963. doi: 10.1016/j.jseaes.2019.103963
    [40]
    Martini E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A, ed. Proceedings of the 2nd Planktonic Conference, Roma. Tecnoscienza, 2: 739–785
    [41]
    McKay C L, Groeneveld J, Filipsson H L, et al. 2015. A comparison of benthic foraminiferal Mn/Ca and sedimentary Mn/Al as proxies of relative bottom-water oxygenation in the low-latitude NE Atlantic upwelling system. Biogeosciences, 12(18): 5415–5428. doi: 10.5194/bg-12-5415-2015
    [42]
    Müller M N, Antia A N, LaRoche J. 2008. Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 53(2): 506–512. doi: 10.4319/lo.2008.53.2.0506
    [43]
    Müller M, Trull T W, Hallegraeff G M. 2017. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi. The ISME Journal, 11(8): 1777–1787. doi: 10.1038/ismej.2017.53
    [44]
    Neretin L N, Pohl C, Jost G, et al. 2003. Manganese cycling in the Gotland Deep, Baltic Sea. Marine Chemistry, 82(3–4): 125–143. doi: 10.1016/S0304-4203(03)00048-3
    [45]
    Newsam C, Bown P R, Wade B S, et al. 2017. Muted calcareous nannoplankton response at the Middle/Late Eocene Turnover event in the western North Atlantic Ocean. Newsletters on Stratigraphy, 50(3): 297–309. doi: 10.1127/nos/2016/0306
    [46]
    Pagani M, Huber M, Liu Zhonghui, et al. 2011. The role of carbon dioxide during the onset of Antarctic glaciation. Science, 334(6060): 1261–1264. doi: 10.1126/science.1203909
    [47]
    Pagani M, Zachos J C, Freeman K H, et al. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309(5734): 600–603. doi: 10.1126/science.1110063
    [48]
    Perrin L, Probert I, Langer G, et al. 2016. Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores. Biogeosciences, 13(21): 5983–6001. doi: 10.5194/bg-13-5983-2016
    [49]
    Persico D, Villa G. 2004. Eocene-Oligocene calcareous nannofossils from Maud Rise and Kerguelen Plateau (Antarctica): paleoecological and paleoceanographic implications. Marine Micropaleontology, 52(1–4): 153–179. doi: 10.1016/j.marmicro.2004.05.002
    [50]
    Plancq J, Mattioli E, Henderiks J, et al. 2013. Global shifts in Noelaerhabdaceae assemblages during the late Oligocene-early Miocene. Marine Micropaleontology, 103: 40–50. doi: 10.1016/j.marmicro.2013.07.004
    [51]
    Poulton A J, Adey T R, Balch W M, et al. 2007. Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5–7): 538–557. doi: 10.1016/j.dsr2.2006.12.003
    [52]
    Quan Cheng, Liu Zhonghui, Utescher T, et al. 2014. Revisiting the Paleogene climate pattern of East Asia: A synthetic review. Earth-Science Reviews, 139: 213–230. doi: 10.1016/j.earscirev.2014.09.005
    [53]
    Raffi I, Agnini C, Backman J, et al. 2016. A Cenozoic calcareous nannofossil biozonation from low and middle latitudes: a synthesis. Journal of Nannoplankton Research, 36(2): 121–132
    [54]
    Reinfelder J R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science, 3: 291–315. doi: 10.1146/annurev-marine-120709-142720
    [55]
    Riebesell U. 2004. Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography, 60(4): 719–729. doi: 10.1007/s10872-004-5764-z
    [56]
    Rost B, Riebesell U, Burkhardt S, et al. 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography, 48(1): 55–67. doi: 10.4319/lo.2003.48.1.0055
    [57]
    Schmitz B. 1987. The TiO2/Al2O3 ratio in the Cenozoic Bengal Abyssal Fan sediments and its use as a paleostream energy indicator. Marine Geology, 76: 195–206. doi: 10.1016/0025-3227(87)90029-6
    [58]
    Shimmield G B, Mowbray S R. 1991. The inorganic geochemical record of the northwest Arabian Sea: A history of productivity variation over the last 400 ky from site 722 and 724. In: Prell W, Niitsuma, eds. Proceedings of Ocean Drilling Program, Scientific Results, 117: 409–429
    [59]
    Sun Xiangjun, Wang Pinxian. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3–4): 181–222. doi: 10.1016/j.palaeo.2005.03.005
    [60]
    Tangunan D N, Baumann K H, Just J, et al. 2018. The last 1 million years of the extinct genus Discoaster: Plio-Pleistocene environment and productivity at Site U1476(Mozambique Channel). Palaeogeography, Palaeoclimatology, Palaeoecology, 505: 187–197. doi: 10.1016/j.palaeo.2018.05.043
    [61]
    Toffanin F, Agnini C, Fornaciari E, et al. 2011. Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: Clues from the central-western Tethys (Alano section, NE Italy). Marine Micropaleontology, 81(1–2): 22–31. doi: 10.1016/j.marmicro.2011.07.002
    [62]
    Tribovillard N, Algeo T J, Lyons T, et al. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2): 12–32. doi: 10.1016/j.chemgeo.2006.02.012
    [63]
    Villa G, Fioroni C, Pea L, et al. 2008. Middle Eocene-late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748. Marine Micropaleontology, 69(2): 173–192. doi: 10.1016/j.marmicro.2008.07.006
    [64]
    Wan Shiming, Clift P D, Zhao Debo, et al. 2017. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2. Geochimica et Cosmochimica Acta, 200: 123–144. doi: 10.1016/j.gca.2016.12.010
    [65]
    Wang Pinxian. 1999. Response of Western Pacific marginal seas to glacial cycles: Paleoceanographic and sedimentological feature. Marine Geology, 156(1–4): 5–39. doi: 10.1016/S0025-3227(98)00172-8
    [66]
    Wu Jiawang, Böning P, Pahnke K, et al. 2016. Unraveling North-African riverine and eolian contributions to central Mediterranean sediments during Holocene sapropel S1 formation. Quaternary Science Reviews, 152: 31–48. doi: 10.1016/j.quascirev.2016.09.029
    [67]
    Wu Guoxuan, Qin Jungan, Mao Shaozhi. 2003. Deep-water Oligocene pollen record from South China Sea. Chinese Science Bulletin, 48(22): 2511–2515
    [68]
    Young J R, Bown P R, Lees J A. 2018. Nannotax3. International Nannoplankton Association. http://ina.tmsoc.org/Nannotax3 [2007-01-01/2019-01-01]
    [69]
    Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686–693. doi: 10.1126/science.1059412
    [70]
    Zhang Yige, Pagani M, Liu Zhonghui, et al. 2013. A 40-million-year history of atmospheric CO2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001): 20130096. doi: 10.1098/rsta.2013.0096
    [71]
    Zhang Gongcheng, Wang Pujun, Wu Jingfu, et al. 2015. Tectonic cycle of marginal oceanic basin: A new evolution model of the South China Sea. Earth Science Frontiers (in Chinese), 22(3): 27–37
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (89) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return