Volume 39 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Jie Zhang, Ling Chen, Zihua Cheng, Limei Tang. Geological characteristics of the Nankai Trough subduction zone and their tectonic significances[J]. Acta Oceanologica Sinica, 2020, 39(10): 81-95. doi: 10.1007/s13131-020-1663-4
Citation: Jie Zhang, Ling Chen, Zihua Cheng, Limei Tang. Geological characteristics of the Nankai Trough subduction zone and their tectonic significances[J]. Acta Oceanologica Sinica, 2020, 39(10): 81-95. doi: 10.1007/s13131-020-1663-4

Geological characteristics of the Nankai Trough subduction zone and their tectonic significances

doi: 10.1007/s13131-020-1663-4
Funds:  The Open Research Fund of the Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, MNR under contract No. KLMMR-2017-B-01; the National Program on Global Change and Air–Sea Interaction, SOA under contract No. GASI-GEOGE-01; the Scientific Research Fund of the Second Institute of Oceanography, MNR under contract Nos JG1903 and QNYC1901; the National Natural Science Foundation of China under contract Nos 41706044, 41706041, 41890811 and 91858214; the Open Research Fund of the Key Laboratory of Ocean and Marginal Sea Geology, Chinese Academy of Sciences under contract No. OMG2019-04.
More Information
  • Corresponding author: E-mail: chenling@sio.org.cn
  • Received Date: 2020-01-06
  • Accepted Date: 2020-03-27
  • Available Online: 2020-12-28
  • Publish Date: 2020-10-25
  • The Nankai Trough subduction zone is a typical subduction system characterized by subduction of multiple geological units of the Philippine Sea Plate (the Kyushu-Palau Ridge, the Shikoku Basin, the Kinan Seamount Chain, and the Izu-Bonin Arc) beneath the Eurasian Plate in the southwest of Japan. This study presents a geophysical and geochemical analysis of the Nankai Trough subduction zone in order to determine the features and subduction effects of each geological unit. The results show that the Nankai Trough is characterized by low-gravity anomalies (–20 mGal to –40 mGal) and high heat flow (60–200 mW/m2) in the middle part and low heat flow (20–80 mW/m2) in the western and eastern parts. The crust of the subducting plate is 5–20 km thick. The mantle composition of the subducting plate is progressively depleted from west to east. Subduction of aseismic ridges (e.g., the Kyushu-Palau Ridge, the Kinan Seamount Chain, and the Zenisu Ridge) is a common process that leads to a series of subduction effects at the Nankai Trough. Firstly, aseismic ridge or seamount chain subduction may deform the overriding plate, resulting in irregular concave topography along the front edge of the accretionary wedge. Secondly, it may have served as a seismic barrier inhibiting rupture propagation in the 1944 Mw 8.1 and 1946 Mw 8.3 earthquakes. In addition, subduction of the Kyushu-Palau Ridge and hot and young Shikoku Basin lithosphere may induce slab melting, resulting in adakitic magmatism and the provision of ore-forming metals for the formation of porphyry copper and gold deposits in the overriding Japan Arc. Based on comparisons of their geophysical and geochemical characteristics, we suggest that, although the Izu-Bonin Arc has already collided with the Japan Arc, the Kyushu-Palau Ridge, which represents a remnant arc of the Izu-Bonin Arc, is still at the subduction stage characterized by a single-vergence system and a topographic boundary with the Japan Arc.
  • loading
  • [1]
    Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1): 197–214. doi: 10.1016/0016-7037(89)90286-x
    Arai R, Iwasaki T, Sato H, et al. 2013. Crustal structure of the Izu collision zone in central Japan from seismic refraction data. Journal of Geophysical Research: Solid Earth, 118(12): 6258–6268. doi: 10.1002/2013JB010532
    Bangs N L B, Gulick S P S, Shipley T H. 2006. Seamount subduction erosion in the nankai trough and its potential impact on the seismogenic zone. Geology, 34(8): 701–704. doi: 10.1130/G22451.1
    Beaumont C, Ellis S, Hamilton J, et al. 1996. Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens. Geology, 24(8): 675–678. doi: 10.1130/0091-7613(1996)024<0675:MMFSCT>2.3.CO;2
    Berndt J, Koepke J, Holtz F. 2005. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology, 46(1): 135–167. doi: 10.1093/petrology/egh066
    Cao Lingmin, Wang Zhi, Wu Shiguo, et al. 2014. A new model of slab tear of the subducting Philippine Sea Plate associated with Kyushu–Palau Ridge subduction. Tectonophysics, 636: 158–169. doi: 10.1016/j.tecto.2014.08.012
    Chen Ping, Zheng Yanpeng, Liu Baohua. 2014. Geophysical features of the Nankai Trough subduction zone and their dynamic significance. Marine Geology & Quaternary Geology (in Chinese), 34(6): 153–160
    Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801–818. doi: 10.2113/gsecongeo.100.5.801
    Cosca M, Arculus R, Pearce J, et al. 1998. 40Ar/39Ar and K–Ar geochronological age constraints for the inception and early evolution of the Izu–Bonin–Mariana arc system. Island Arc, 7(3): 579–595. doi: 10.1111/j.1440-1738.1998.00211.x
    Danyushevsky L V. 2001. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. Journal of Volcanology and Geothermal Research, 110(3–4): 265–280. doi: 10.1016/S0377-0273(01)00213-X
    Dominguez S, Malavieille J, Lallemand S E. 2000. Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics, 19(1): 182–196. doi: 10.1029/1999TC900055
    Freymuth H, Ivko B, Gill J B, et al. 2016. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc. Geochimica et Cosmochimica Acta, 186: 49–70. doi: 10.1016/j.gca.2016.04.034
    Fukuda S, Nakai S I, Niihori K, et al. 2008. 238U-230Th radioactive disequilibrium in the northern Izu arc: (230Th/232Th) in the sub-arc mantle. Geochemical Journal, 42(6): 461–479. doi: 10.2343/geochemj.42.461
    GEBCO Compilation Group. 2020. GEBCO 2020 Grid, doi: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9
    Gutscher M A, Maury R, Eissen J P, et al. 2000. Can slab melting be caused by flat subduction?. Geology, 28(6): 535–538. doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
    Haraguchi S, Ishii T, Kimura J I, et al. 2003. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contributions to Mineralogy and Petrology, 145(2): 151–168. doi: 10.1007/s00410-002-0433-y
    Haraguchi S, Ishii T, Kimura J I, et al. 2012. The early Miocene (~25 Ma) volcanism in the northern Kyushu-Palau Ridge, enriched mantle source injection during rifting prior to the Shikoku backarc basin opening. Contributions to Mineralogy and Petrology, 163(3): 483–504. doi: 10.1007/s00410-011-0680-x
    Heki K, Miyazaki S I. 2001. Plate convergence and long-term crustal deformation in central Japan. Geophysical Research Letters, 28(12): 2313–2316. doi: 10.1029/2000GL012537
    Hickey-Vargas R. 1991. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate. Earth and Planetary Science Letters, 107(2): 290–304. doi: 10.1016/0012-821X(91)90077-U
    Hickey-Vargas R. 1998. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine sea plate spreading centers: an assessment of local versus large-scale processes. Journal of Geophysical Research: Solid Earth, 103(B9): 20963–20979. doi: 10.1029/98JB02052
    Hochstaedter A, Gill J, Peters R, et al. 2001. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab. Geochemistry, Geophysics, Geosystems, 2(7): 1019. doi: 10.1029/2000GC000105
    Hochstaedter A G, Gill J B, Taylor B, et al. 2000. Across-arc geochemical trends in the Izu-Bonin arc: Constraints on source composition and mantle melting. Journal of Geophysical Research: Solid Earth, 105(B1): 495–512. doi: 10.1029/1999JB900125
    Idini B, Rojas F, Ruiz S, et al. 2017. Ground motion prediction equations for the Chilean subduction zone. Bulletin of Earthquake Engineering, 15(5): 1853–1880. doi: 10.1007/s10518-016-0050-1
    Ishizuka O, Hickey-Vargas R, Arculus R J, et al. 2018. Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters, 481: 80–90. doi: 10.1016/j.jpgl.2017.10.023
    Ishizuka O, Taylor R N, Milton J A, et al. 2003. Fluid–mantle interaction in an intra-oceanic arc: Constraints from high-precision Pb isotopes. Earth and Planetary Science Letters, 211(3–4): 221–236. doi: 10.1016/S0012-821X(03)00201-2
    Ishizuka O, Uto K, Yuasa M, et al. 1998. K-Ar ages from seamount chains in the back-arc region of the Izu–Ogasawara arc. Island Arc, 7(3): 408–421. doi: 10.1111/j.1440-1738.1998.00199.x
    Ishizuka O, Taylor R N, Yuasa M, et al. 2011. Making and breaking an island arc: A new perspective from the oligocene Kyushu-Palau Arc, Philippine sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005. doi: 10.1029/2010GC003440
    Ishizuka O, Yuasa M, Taylor R N, et al. 2009. Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chemical Geology, 266(3–4): 274–296. doi: 10.1016/j.chemgeo.2009.06.014
    Kakubuchi S, Nagao T, Nagao K. 2000. K-Ar ages and magmatic history of the Abu Monogenetic Volcano Group, southwest Japan. Japanese Magazine of Mineralogical and Petrological Sciences, 29(5): 191–198. doi: 10.2465/gkk.29.191
    Kimura J I, Kent A J R, Rowe M C, et al. 2010. Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: Using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochemistry, Geophysics, Geosystems, 11(10): Q10011. doi: 10.1029/2010GC003050
    Kobayashi K, Kasuga S, Okino K. 1995. Shikoku basin and its margins, In: Taylor B, ed. Backarc Basins. Boston, MA: Springer, 381–405
    Kodaira S, Iidaka T, Kato A, et al. 2004. High pore fluid pressure may cause silent slip in the Nankai trough. Science, 304(5675): 1295–1298. doi: 10.1126/science.1096535
    Kodaira S, Iidaka T, Nakanishi A, et al. 2005. Onshore-offshore seismic transect from the eastern Nankai Trough to central Japan crossing a zone of the Tokai slow slip event. Earth, Planets and Space, 57(10): 943–959. doi: 10.1186/BF03351874
    Kodaira S, Kurashimo E, Park J O, et al. 2002. Structural factors controlling the rupture process of a megathrust earthquake at the Nankai Trough seismogenic zone. Geophysical Journal International, 149(3): 815–835. doi: 10.1046/j.1365-246X.2002.01691.x
    Kodaira S, Takahashi N, Park J O, et al. 2000. Western Nankai Trough seismogenic zone: Results from a wide-angle ocean bottom seismic survey. Journal of Geophysical Research: Solid Earth, 105(B3): 5887–5905. doi: 10.1029/1999JB900394
    Lallemand S, Heuret A, Boutelier D. 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems, 6(9): Q09006
    Lee W H K. 1964. International heat flow committee. Eos, Transactions American Geophysical Union, 45(3): 441–444. doi: 10.1029/TR045i003p00441
    Li K. 1997. Crustal structure of north Kyushu-Palau Ridge by ocean bottom seismographic observation. Proceedings of Seismological Society of Japan, 2: 38
    Liu X, Zhao D P. 2014. Structural control on the nucleation of megathrust earthquakes in the Nankai subduction zone. Geophysical Research Letters, 41(23): 8288–8293. doi: 10.1002/2014GL062002
    Mason W G, Moresi L, Betts P G, et al. 2010. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones. Tectonophysics, 483(1–2): 71–79. doi: 10.1016/j.tecto.2009.08.021
    Matsuda T. 1980. Traces of Izu Peninsula—its direction of movement during the recent several million years. Earth Monthly, 2: 164–168
    Maus S, Barckhausen U, Berkenbosch H, et al. 2009. EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems, 10(8): Q08005. doi: 10.1029/2009GC002471
    Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321–355. doi: 10.2475/ajs.274.4.321
    Morris P A. 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23(5): 395–398. doi: 10.1130/0091-7613(1995)023<0395:SMAAEO>2.3.CO;2
    Nakajima J, Hasegawa A. 2007. Tomographic evidence for the mantle upwelling beneath southwestern Japan and its implications for arc magmatism. Earth and Planetary Science Letters, 254(1–2): 90–105. doi: 10.1016/j.jpgl.2006.11.024
    Nakamura Y, Shibutani T. 1998. Three-dimensional shear wave velocity structure in the upper mantle beneath the Philippine Sea region. Earth, Planets and Space, 50(11–12): 939–952. doi: 10.1186/BF03352189
    Nakamura K, Shimazaki K, Yonekura N. 1984. Subduction, bending and education; present and Quaternary tectonics of the northern border of the Philippine Sea Plate. Bulletin de la Société Géologique de France, S7-XXVI(2): 221–243. doi: 10.2113/gssgfbull.S7-XXVI.2.221
    Nakanishi A, Shiobara H, Hino R, et al. 1998. Detailed subduction structure across the eastern Nankai Trough obtained from ocean bottom seismographic profiles. Journal of Geophysical Research: Solid Earth, 103(B11): 27151–27168. doi: 10.1029/98JB02344
    Nakanishi A, Takahashi N, Park J O, et al. 2002. Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone. Journal of Geophysical Research: Solid Earth, 107(B1): EPM 2-1–EPM 2-21. doi: 10.1029/2001JB000424
    Nishizawa A, Kaneda K, Oikawa M. 2009. Seismic structure of the northern end of the Ryukyu Trench subduction zone, southeast of Kyushu, Japan. Earth, Planets and Space, 61(8): e37–e40. doi: 10.1186/BF03352942
    Nishizawa A, Kaneda K, Oikawa M, et al. 2017. Variations in seismic velocity distribution along the Ryukyu (Nansei-Shoto) Trench subduction zone at the northwestern end of the Philippine Sea plate. Earth, Planets and Space, 69: 86. doi: 10.1186/s40623-017-0674-7
    Niu Yaoling, O’Hara M J, Pearce J A. 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrological perspective. Journal of Petrology, 44(5): 851–866. doi: 10.1093/petrology/44.5.851
    Niu Xiongwei, Zhao Dapeng, Isozaki Y, et al. 2020. Structural heterogeneity and megathrust earthquakes in Southwest Japan. Physics of the Earth and Planetary Interiors, 298: 106347. doi: 10.1016/j.pepi.2019.106347
    Okamura Y. 1988. Subduction of seamount and paleosubduction direction of the Philippine Sea Plate. Earth Monthly, 10: 603–607
    Okino K, Ohara Y, Kasuga S, et al. 1999. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins. Geophysical Research Letters, 26(15): 2287–2290. doi: 10.1029/1999GL900537
    Okino K, Shimakawa Y, Nagaoka S. 1994. Evolution of the Shikoku basin. Journal of Geomagnetism and Geoelectricity, 46(6): 463–479. doi: 10.5636/jgg.46.463
    Park J O, Hori T, Kaneda Y. 2009. Seismotectonic implications of the Kyushu-Palau Ridge subducting beneath the westernmost Nankai forearc. Earth, Planets and Space, 61(8): 1013–1018. doi: 10.1186/BF03352951
    Park J O, Tsuru T, Takahashi N, et al. 2002. A deep strong reflector in the Nankai accretionary wedge from multichannel seismic data: Implications for underplating and interseismic shear stress release. Journal of Geophysical Research: Solid Earth, 107(B4): ESE 3-1–ESE 3-16. doi: 10.1029/2001JB000262
    Pautot G, Rangin C. 1989. Subduction of the South China Sea axial ridge below Luzon (Philippines). Earth and Planetary Science Letters, 92(1): 57–69. doi: 10.1016/0012-821X(89)90020-4
    Peacock S M, Rushmer T, Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1–2): 227–244. doi: 10.1016/0012-821X(94)90042-6
    Pusok A E, Kaus B J P, Popov A A. 2018. The effect of rheological approximations in 3-D numerical simulations of subduction and collision. Tectonophysics, 746: 296–311. doi: 10.1016/j.tecto.2018.04.017
    Sagiya T, Thatcher W. 1999. Coseismic slip resolution along a plate boundary megathrust: The Nankai Trough, southwest Japan. Journal of Geophysical Research: Solid Earth, 104(B1): 1111–1129. doi: 10.1029/98JB02644
    Saito S, Arima M, Nakajima T, et al. 2007. Formation of distinct granitic magma batches by partial melting of hybrid lower crust in the Izu arc collision zone, central Japan. Journal of Petrology, 48(9): 1761–1791. doi: 10.1093/petrology/egm037
    Saito S, Arima M, Nakajima T, et al. 2012. Petrogenesis of the Kaikomagatake granitoid pluton in the Izu Collision Zone, central Japan: implications for transformation of juvenile oceanic arc into mature continental crust. Contributions to Mineralogy and Petrology, 163(4): 611–629. doi: 10.1007/s00410-011-0689-1
    Saito S, Tani K. 2017. Transformation of juvenile Izu–Bonin–Mariana oceanic arc into mature continental crust: an example from the Neogene Izu collision zone granitoid plutons, Central Japan. Lithos, 277: 228–240. doi: 10.1016/j.lithos.2016.07.035
    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from cryosat-2 and jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
    Sandwell D T, Smith W H F. 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. Journal of Geophysical Research: Solid Earth, 114(B1): B01411. doi: 10.1029/2008JB006008
    Sato H, Machida S, Kanayama S, et al. 2002. Geochemical and isotopic characteristics of the Kinan Seamount Chain in the Shikoku Basin. Geochemical Journal, 36(5): 519–526. doi: 10.2343/geochemj.36.519
    Shibata T, Yoshikawa M, Ujike O, et al. 2014. Along-arc geochemical variations in Quaternary magmas of northern Kyushu Island, Japan. Geological Society, London, Special Publications, 385(1): 15–29. doi: 10.1144/SP385.13
    Soh W, Nakayama K, Kimura T. 1998. Arc–arc collision in the Izu collision zone, central Japan, deduced from the Ashigara Basin and adjacent Tanzawa Mountains. Island Arc, 7(3): 330–341. doi: 10.1111/j.1440-1738.1998.00193.x
    Sun Weidong, Arculus R J, Kamenetsky V S, et al. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975–978. doi: 10.1038/nature02972
    Sun Weidong, Ling Mingxing, Yang Xiaoyong, et al. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Science China Earth Sciences, 53(4): 475–484. doi: 10.1007/s11430-010-0024-0
    Sun Weidong, Zhang Hong, Ling Mingxing, et al. 2011. The genetic association of adakites and Cu–Au ore deposits. International Geology Review, 53(5–6): 691–703. doi: 10.1080/00206814.2010.507362
    Tabei T, Hashimoto M, Miyazaki S, et al. 2003. Present-day deformation across the southwest Japan arc: Oblique subduction of the Philippine Sea plate and lateral slip of the Nankai forearc. Earth, Planets and Space, 55(10): 643–647. doi: 10.1186/BF03352471
    Takahashi N, Kodaira S, Nakanishi A, et al. 2002. Seismic structure of western end of the Nankai Trough seismogenic zone. Journal of Geophysical Research: Solid Earth, 107(B10): ESE 2-1–ESE 2-19. doi: 10.1029/2000JB000121
    Talwani M, Worzel J L, Landisman M. 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research, 64(1): 49–59. doi: 10.1029/JZ064i001p00049
    Tang Yong, Li Mingbi, Li Jiabiao, et al. 2011. The geomorphological features and continuity of the Kyushu-Palau Ridge (KPR). Acta Oceanologica Sinica, 30(5): 114–124. doi: 10.1007/s13131-011-0136-1
    Wessel P, Smith W H. 1995. New version of generic mapping tools released. Eos, Transactions of the American Geophysical Union, 76(33): 329. doi: 10.1029/95EO00198
    Wu Song, Zheng Youye, Sun Xiang. 2016. Subduction metasomatism and collision-related metamorphic dehydration controls on the fertility of porphyry copper ore-forming high Sr/Y magma in Tibet. Ore Geology Reviews, 73: 83–103. doi: 10.1016/j.oregeorev.2015.10.023
    Xu Jiren, Zhao Zhixin, Kono Y, et al. 2003. Regional characteristics of stress field and its dynamics in and around the Nankai Trough, Japan. Chinese Journal of Geophysics (in Chinese), 46(4): 488–494
    Yagi Y, Kikuchi M, Yoshida S, et al. 1998. Source process of the Hyuga-nada earthquake of April 1, 1968 (MW 7.5), and its relationship to the subsequent seismicity. Zisin, 51(1): 139–148. doi: 10.4294/zisin1948.51.1_139
    Yamamoto Y, Obana K, Takahashi T, et al. 2013. Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone. Tectonophysics, 589: 90–102. doi: 10.1016/j.tecto.2012.12.028
    Yan Quanshu, Shi Xuefa. 2011. Geological comparative studies of Japan arc system and Kyushu-Palau Arc. Acta Oceanologica Sinica, 30(4): 107–121. doi: 10.1007/s13131-011-0134-3
    Yogodzinski G M, Lees J M, Churikova T G, et al. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500–504. doi: 10.1038/35054039
    Zang Shaoxian, Ning Jieyuan. 2002. Interaction between the Philippine Sea plate and the Eurasia plate and its influence on the tectonics of eastern Asia. Chinese Journal of Geophysics, 45(2): 184–194. doi: 10.1002/cjg2.231
    Zhang Jie, Li Jiabiao, Ding Weiwei. 2012. Reviews of the study on crustal structure and evolution of the Kyushu-Palau Ridge. Advances in Marine Science (in Chinese), 30(4): 595–607
    Zhao Dapeng, Yanada T, Hasegawa A, et al. 2012. Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophysical Journal International, 190(2): 816–828. doi: 10.1111/j.1365-246X.2012.05550.x
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (405) PDF downloads(12) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint