Volume 39 Issue 12
Jan.  2021
Turn off MathJax
Article Contents
Zhentong Li, Yongsheng Tian, Meiling Cheng, Linna Wang, Jingjing Zhang, Yuping Wu, Zunfang Pang, Wenhui Ma, Jieming Zhai. The complete mitochondrial genome of the hybrid grouper Epinephelus moara (♀)×Epinephelus tukula (♂), and phylogenetic analysis in subfamily Epinephelinae[J]. Acta Oceanologica Sinica, 2020, 39(12): 65-75. doi: 10.1007/s13131-020-1689-7
Citation: Zhentong Li, Yongsheng Tian, Meiling Cheng, Linna Wang, Jingjing Zhang, Yuping Wu, Zunfang Pang, Wenhui Ma, Jieming Zhai. The complete mitochondrial genome of the hybrid grouper Epinephelus moara (♀)×Epinephelus tukula (♂), and phylogenetic analysis in subfamily Epinephelinae[J]. Acta Oceanologica Sinica, 2020, 39(12): 65-75. doi: 10.1007/s13131-020-1689-7

The complete mitochondrial genome of the hybrid grouper Epinephelus moara (♀)×Epinephelus tukula (♂), and phylogenetic analysis in subfamily Epinephelinae

doi: 10.1007/s13131-020-1689-7
Funds:  The Key Research and Development Program of Shandong Province under contact No. 2019GHY112063; the Breeding Project of Shandong Province under contract No. 2019LZGC020; the Central Public-interest Scientific Institution Basal Research Fund Chinese Academy of Fishery Sciences under contract Nos 2020XT0601, 2020TD19 and 2020TD25; the Yellow Sea Fisheries Research Institute Research Fees under contract Nos 20603022019002 and 20603022020015.
More Information
  • Corresponding author: E-mail: tianys@ysfri.ac.cn
  • Received Date: 2019-07-11
  • Accepted Date: 2020-04-27
  • Available Online: 2021-04-21
  • Publish Date: 2020-12-25
  • The mitochondrial genome (mitogenome) of hybrid grouper Epinephelus moara (♀)×Epinephelus tukula (♂), a new hybrid progeny, can provide valuable information for analyzing phylogeny and molecular evolution. In this study, the mitogenome was analyzed using PCR amplification and sequenced, then the phylogenetic relationship of E. moara (♀)×E. tukula (♂) and 35 other species were constructed using Maximum Likelihood and Neighbor-Joining methods with the nucleotide sequences of 13 conserved protein-coding genes (PCGs). The complete mitogenome of E. moara (♀)×E. tukula (♂) was 16 695 bp in length, which contained 13 PCGs, 2 rRNA genes, 22 tRNA genes, a replication origin and a control region. The composition and order of these genes were consistent with most other vertebrates. Of the 13 PCGs, 12 PCGs were encoded on the heavy strand, and ND6 was encoded on the light strand. The mitogenome of the E. moara (♀)×E. tukula (♂) had a higher AT nucleotide content, a positive AT-skew and a negative GC-skew. All protein initiation codons were ATG, except for COX and ND4 (GTG), ATP6 (CTG), and ND3 (ATA). ND2, COXII, ND3, ND4 and Cytb had T as the terminating codon, COXIII’s termination codon was TA, and the remaining PCGs of that were TAA. All tRNA genes, except for the lacking DHU-arm of tRNASer (AGN), were predicted to form a typical cloverleaf secondary structure. In addition, sequence similarity analysis (99% identity) and phylogenetic analysis (100% bootstrap value) indicated that the mitochondrial genome was maternally inherited. This study provides mitogenome data for studying genetic, phylogenetic relationships and breeding of grouper.
  • loading
  • [1]
    Anderson S, Bankier A T, Barrell B G, et al. 1981. Sequence and organization of the human mitochondrial genome. Nature, 290(5806): 457–465. doi: 10.1038/290457a0
    [2]
    Avise J C. 2009. Phylogeography: retrospect and prospect. Journal of Biogeography, 36(1): 3–15. doi: 10.1111/j.1365-2699.2008.02032.x
    [3]
    Ballard J W O, Whitlock M C. 2004. The incomplete natural history of mitochondria. Molecular Ecology, 13(4): 729–744. doi: 10.1046/j.1365-294X.2003.02063.x
    [4]
    Bibb M J, van Etten R A, Wright C T, et al. 1981. Sequence and gene organization of mouse mitochondrial DNA. Cell, 26(2): 167–180. doi: 10.1016/0092-8674(81)90300-7
    [5]
    Boore J L. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767–1780. doi: 10.1093/nar/27.8.1767
    [6]
    Boore J L, Daehler L L, Brown W M. 1999. Complete sequence, gene arrangement, and genetic code of mitochondrial DNA of the Cephalochordate Branchiostoma floridae (Amphioxus). Molecular Biology and Evolution, 16(3): 410–418. doi: 10.1093/oxfordjournals.molbev.a026122
    [7]
    Brown J R, Beckenbach A T, Smith M J. 1992. Mitochondrial DNA length variation and heteroplasmy in populations of white sturgeon (Acipenser transmontanus). Genetics, 132(1): 221–228
    [8]
    Brown W M, George Jr M, Wilson A C. 1979. Rapid evolution of animal mitochondrial DNA. Proceeding of the National Academy of Sciences of the United States of America, 76(4): 1967–1971. doi: 10.1073/pnas.76.4.1967
    [9]
    Chang Y S, Huang F L, Lo T B. 1994. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. Journal of Molecular Evolution, 38(2): 138–155. doi: 10.1007/BF00166161
    [10]
    Cheng S S, Senoo S, Siddiquee S, et al. 2015. Genetic variation in the mitochondrial genome of the giant grouper Epinephelus lanceolatus (Bloch, 1790) and its application for the identification of broodstock. Aquaculture Reports, 2: 139–143. doi: 10.1016/j.aqrep.2015.09.003
    [11]
    Craig M T, Hastings P A. 2007. A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyological Research, 54(1): 1–17. doi: 10.1007/s10228-006-0367-x
    [12]
    Craig M T, Pondella II D J, Franck J P C, et al. 2001. On the status of the serranid fish genus Epinephelus: evidence for paraphyly based upon 16S rDNA sequence. Molecular Phylogenetics and Evolution, 19(1): 121–130. doi: 10.1006/mpev.2000.0913
    [13]
    DeMarais B D, Dowling T E, Douglas M E, et al. 1992. Origin of Gila seminuda (Teleostei: Cyprinidae) through introgressive hybridization: Implications for evolution and conservation. Proceedings of the National Academy of Sciences of the United States of America, 89(7): 2747–2751. doi: 10.1073/pnas.89.7.2747
    [14]
    Ding Shaoxiong, Zhang Xuan, Guo Feng, et al. 2006. Molecular phylogenetic relationships of China Sea groupers based on cytochrome b gene fragment sequences. Science in China: Series C Life Sciences, 49(3): 235–242. doi: 10.1007/s11427-006-0235-y
    [15]
    Gao Fengtao, Wei Min, Zhu Ying, et al. 2017. Characterization of the complete mitochondrial genome of the hybrid Epinephelus moara ♀×Epinephelus lanceolatus♂, and phylogenetic analysis in subfamily epinephelinae. Journal of Ocean University of China, 16(3): 555–563. doi: 10.1007/s11802-017-3202-2
    [16]
    Glamuzina B, Glavić N, Skaramuca B, et al. 2001. Early development of the hybrid Epinephelus costae ♀×E. marginatus ♂. Aquaculture, 198(1–2): 55–61
    [17]
    Guo Xinhong, Liu Shaojun, Zhang Chun, et al. 2004. Comparative and evolutionary analysis of the cytochrome b sequences in cyprinids with different ploidy levels derived from crosses. Genetica, 121(3): 295–301. doi: 10.1023/B:GENE.0000039847.82917.c4
    [18]
    Heemstra P C, Randall J E. 1993. Groupers of the World (Family Serranidae, subfamily Epinephelinae): An Annotated and Illustrated Catalogue of the Grouper, Rockcod, Hind, Coral Grouper and Lyretail Species Known to Date. Rome: Food and Agriculture Organization of the United Nations, 1–10
    [19]
    Hoarau G, Holla S, Lescasse R, et al. 2002. Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus. Molecular Biology and Evolution, 19(12): 2261–2264. doi: 10.1093/oxfordjournals.molbev.a004049
    [20]
    James C M, Al-Thobaiti S A, Rasem B M, et al. 1999. Potential of grouper hybrid (Epinephelus fuscoguttatus×E. polyphekadion) for aquaculture. Naga, The World Fish Center, 22(1): 19–23
    [21]
    Lanfear R, Calcott B, Ho S Y W, et al. 2012. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6): 1695–1701. doi: 10.1093/molbev/mss020
    [22]
    Liu Lili, Xie Hongbing, Yu Qifang, et al. 2016. Determination and analysis of the complete mitochondrial genome sequence of taoyuan chicken. Mitochondrial DNA Part A, 27(1): 371–372. doi: 10.3109/19401736.2014.895991
    [23]
    Liu M, Li J L, Ding S X, et al. 2013. Epinephelus moara: a valid species of the family Epinephelidae (Pisces: Perciformes). Journal of Fish Biology, 82(5): 1684–1699. doi: 10.1111/jfb.12112
    [24]
    Lowe T M, Chan P P. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44(W1): W54–W57. doi: 10.1093/nar/gkw413
    [25]
    Ludwig A, May B, Debus L, et al. 2000. Heteroplasmy in the mtDNA control region of sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics, 156(4): 1933–1947
    [26]
    Meusel M S, Moritz R F A. 1993. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis Mellifera L.) eggs. Current Genetics, 24(6): 539–543. doi: 10.1007/BF00351719
    [27]
    Moritz C, Dowling T E, Brown W M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269–292. doi: 10.1146/annurev.es.18.110187.001413
    [28]
    Oh B S, Oh D J, Jung M M, et al. 2012. Complete mitochondrial genome of the longtooth grouper Epinephelus bruneus (perciformes, serranidae). Mitochondrial DNA, 23(2): 137–138. doi: 10.3109/19401736.2012.660928
    [29]
    Peng Rui, Zeng Bo, Meng Xiuxiang, et al. 2007. The complete mitochondrial genome and phylogenetic analysis of the giant panda (Ailuropoda melanoleuca). Gene, 397(1–2): 76–83. doi: 10.1016/j.gene.2007.04.009
    [30]
    Perna N T, Kocher T D. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41(3): 353–358. doi: 10.1007/BF01215182
    [31]
    Qu Meng, Zhang Xiang, Ding Shaoxiong. 2012. Complete mitochondrial genome of yellow grouper Epinephelus awoara (Perciformes, Epinephelidae). Mitochondrial DNA, 23(6): 432–434. doi: 10.3109/19401736.2012.710217
    [32]
    Stanton D J, Daehler L L, Moritz C C, et al. 1994. Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics, 137(1): 233–241
    [33]
    Stemshorn K C, Reed F A, Nolte A W, et al. 2011. Rapid formation of distinct hybrid lineages after secondary contact of two fish species (Cottus sp.). Molecular Ecology, 20(7): 1475–1491. doi: 10.1111/j.1365-294X.2010.04997.x
    [34]
    Stepien C A, Kocher T D. 1997. Molecules and morphology in studies of fish evolution. In: Kocher T D, Stepien C A, eds. Molecular Systematics of Fishes. Amsterdam: Elsevier, 1–11
    [35]
    Tian Yongsheng, Tang Jing, Ma Wenhui, et al. 2019. Development and growth of hybrid offspring of brown grouper Epinephelus fuscoguttatus (♀) × blue speckled grouper Epinephelus tulcula (♂) using cryopreserved sperm. Progress in Fishery Sciences (in Chinese), 40(6): 36–47
    [36]
    Wang Yuguo. 2017. Natural hybridization and speciation. Biodiversity Science (in Chinese), 25(6): 565–576. doi: 10.17520/biods.2017041
    [37]
    Zhao X, Li N, Guo W, et al. 2004. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries). Heredity, 93(4): 399–403. doi: 10.1038/sj.hdy.6800516
    [38]
    Zhou Hanlin, Yang Sen, Gao Chuan, et al. 2012. Analysis of genetic variability of mtDNA COI genes between two grouper hybrids and their parents. Journal of Tropical Organisms (in Chinese), 3(1): 1–10
    [39]
    Zhu Kecheng, Huang Guiju, Zhang Dongling, et al. 2016. The complete nucleotide sequence of malabar grouper (Epinephelus malabaricus) mitochondrial genome. DNA Sequence, 27(3): 2087–2088
    [40]
    Zhu Zeyuan, Yue Genhua. 2008. The complete mitochondrial genome of red grouper Plectropomus leopardus and its applications in identification of grouper species. Aquaculture, 276(1–4): 44–49. doi: 10.1016/j.aquaculture.2008.02.008
    [41]
    Zhuang Xuan, Ding Shaoxiong, Wang Jun, et al. 2010. A set of 16 consensus primer pairs amplifying the complete mitochondrial genomes of orange-spotted grouper (Epinephelus coioides) and Hong Kong grouper (Epinephelus akaara). Molecular Ecology Resources, 9(6): 1551–1553
    [42]
    Zhuang Xuan, Qu Meng, Zhang Xiang, et al. 2013. A comprehensive description and evolutionary analysis of 22 grouper (Perciformes, Epinephelidae) mitochondrial genomes with emphasis on two novel genome organizations. PLoS One, 8(8): e73561. doi: 10.1371/journal.pone.0073561
    [43]
    Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13): 3406–3415. doi: 10.1093/nar/gkg595
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (179) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return