Volume 40 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Lianhua He, Jihua Liu, Hui Zhang, Jingjing Gao, Aimei Zhu, Ying Zhang. Copper and zinc isotope variations in ferromanganese crusts and their isotopic fractionation mechanism[J]. Acta Oceanologica Sinica, 2021, 40(9): 43-52. doi: 10.1007/s13131-021-1775-5
Citation: Lianhua He, Jihua Liu, Hui Zhang, Jingjing Gao, Aimei Zhu, Ying Zhang. Copper and zinc isotope variations in ferromanganese crusts and their isotopic fractionation mechanism[J]. Acta Oceanologica Sinica, 2021, 40(9): 43-52. doi: 10.1007/s13131-021-1775-5

Copper and zinc isotope variations in ferromanganese crusts and their isotopic fractionation mechanism

doi: 10.1007/s13131-021-1775-5
Funds:  The Shandong Provincial Natural Science Foundation of China under contract No. ZR2014DP009; the China Ocean Mineral Resource Research and Development Association Research Program under contract Nos DY135-N-1-03, DY135-C1-1-04 and DY135-R2-1-03; the Fund of the Construction and Operation of Test and Technical Support System for Natural Resources Investigation and Evaluation.
More Information
  • Corresponding author: E-mail: jihliu@fio.org.cn
  • Received Date: 2020-06-02
  • Accepted Date: 2020-09-27
  • Available Online: 2021-07-27
  • Publish Date: 2021-09-30
  • Ferromanganese (Fe-Mn) crusts are potential archives of the Cu and Zn isotope compositions of seawater through time. In this study, the Cu and Zn isotopes of the top surface of 28 Fe-Mn crusts and 2 Fe-Mn nodules were analysed by MC-ICP-MS using combined sample-standard bracketing for mass bias correction. The Zn isotope compositions of the top surface of Fe-Mn crusts are in the range of 0.71‰ to 1.08‰, with a mean δ66Zn value of 0.94‰±0.21‰ (2SD, n=28). The δ65Cu values of the top surface of Fe-Mn crusts range from 0.33‰ to 0.73‰, with a mean value of 0.58‰±0.20‰ (2SD, n=28). The Cu isotope compositions of Fe-Mn crusts are isotopically lighter than that of dissolved Cu in deep seawater (0.58‰ vs. 0.9‰). In contrast, the δ66Zn values of Fe-Mn crusts appear to be isotopically heavy compared to deep seawater (0.94‰±0.21‰ vs. 0.51‰±0.14‰). The isotope fractionation between Fe-Mn crusts and seawater is attributed to equilibrium partitioning between the sorption to crusts and the organic-ligand-bound Cu and Zn in seawater. The Cu and Zn isotopes in the top surface of Fe-Mn crusts are not a direct reflection of the Cu and Zn isotopes, but a function of Cu and Zn isotopes in modern seawater. This study proposes that Fe-Mn crusts have the potential to be archives for paleoceanography through Cu and Zn isotope analysis.
  • loading
  • [1]
    Amira S, Spångberg D, Hermansson K. 2005. Distorted five-fold coordination of Cu2+(aq) from a Car-Parrinello molecular dynamics simulation. Physical Chemistry Chemical Physics, 7(15): 2874–2880. doi: 10.1039/b502427g
    Anbar A D, Rouxel O. 2007. Metal stable isotopes in paleoceanography. Annual Review of Earth and Planetary Sciences, 35(1): 717–746. doi: 10.1146/annurev.earth.34.031405.125029
    Aplin A C, Cronan D S. 1985. Ferromanganese oxide deposits from the Central Pacific Ocean: I. Encrustations from the Line Islands Archipelago. Geochimica Et Cosmochimica Acta, 49(2): 427–436. doi: 10.1016/0016-7037(85)90034-1
    Archer C, Andersen M B, Cloquet C, et al. 2017. Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. Journal of Analytical Atomic Spectrometry, 32(2): 415–419. doi: 10.1039/C6JA00282J
    Albarède B, Beard B. 2004. Analytical methods for non-traditional isotopes in geochemistry of non-traditional stable isotopes. Reviews in Mineralogy & Geochemistry, 55: 113–152
    Arrhenius G, Bonatti E. 1963. Neptunism and vulcanism in the ocean. Progress in Oceanography, 3: 7–22
    Beard B L, Johnson C M, Cox L, et al. 1999. Iron isotope biosignatures. Science, 285(5435): 1889–1892. doi: 10.1126/science.285.5435.1889
    Bertine K K, Turekian K K. 1973. Molybdenum in marine deposits. Geochimica et Cosmochimica Acta, 37(6): 1415–1434. doi: 10.1016/0016-7037(73)90080-X
    Boyle E A, Edmond J M, Sholkovitz E R. 1977. The mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta, 41(9): 1313–1324. doi: 10.1016/0016-7037(77)90075-8
    Boyle E A, John S, Abouchami W, et al. 2012. GEOTRACES IC1(BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnology and Oceanography: Methods, 10(9): 653–665. doi: 10.4319/lom.2012.10.653
    Bruland K W. 1980. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth and Planetary Science Letters, 47(2): 176–198. doi: 10.1016/0012-821X(80)90035-7
    Bruland K W. 1989. Complexation of zinc by natural organic ligands in the Central North Pacific. Limnology and Oceanography, 34(2): 269–285. doi: 10.4319/lo.1989.34.2.0269
    Bruland K W, Lohan M C. 2003. Controls of trace metals in seawater. Treatise on Geochemistry, 6: 23–47
    Bruland K W, Orians K J, Cowen J P. 1994. Reactive trace metals in the stratified central North Pacific. Geochimica et Cosmochimica Acta, 58(15): 3171–3182. doi: 10.1016/0016-7037(94)90044-2
    Coale K H, Bruland K W. 1988. Copper complexation in the Northeast Pacific. Limnology and Oceanography, 33(5): 1084–1101. doi: 10.4319/lo.1988.33.5.1084
    Craig J D, Andrews J E, Meylan M A. 1982. Ferromanganese deposits in the Hawaiian Archipelago. Marine Geology, 45(1–2): 127–157. doi: 10.1016/0025-3227(82)90183-9
    Donat J R, Bruland K W. 1990. A comparison of two voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters. Marine Chemistry, 28(4): 301–323. doi: 10.1016/0304-4203(90)90050-M
    Fujii T, Moynier F, Dauphas N, et al. 2011. Theoretical and experimental investigation of nickel isotopic fractionation in species relevant to modern and ancient oceans. Geochimica et Cosmochimica Acta, 75(2): 469–482. doi: 10.1016/j.gca.2010.11.003
    Gao Jingjing, Liu Jihua, Li Xianguo, et al. 2017. The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method. Acta Oceanologica Sinica, 36(1): 109–117. doi: 10.1007/s13131-017-0991-5
    Halbach P, Segl M, Puteanus D, et al. 1983. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature, 304(5928): 716–719. doi: 10.1038/304716a0
    He Lianhua, Liu Jihua, Zhang Jun, et al. 2016. Separation of Cu and Zn in cobalt-rich crusts for isotope determination by MC-ICP MS. Journal of Instrumental Analysis (in Chinese), 35(10): 1347–1350
    Hein J R, Bohrson W A, Schulz M S, et al. 1992. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications. Paleoceanography, 7(1): 63–77. doi: 10.1029/91PA02936
    Hein J R, Koschinsky A, Halbach P, et al. 1997. Iron and Manganese Oxide Mineralization in the Pacific. Geological Society, London, Special Publications, 119(1): 123–138. doi: 10.1144/GSL.SP.1997.119.01.09
    Hein J R, Schwab W C, Davis A S. 1988. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Marine Geology, 78(3–4): 255–283. doi: 10.1016/0025-3227(88)90113-2
    John S G, Geis R W, Saito M A, et al. 2007. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnology and Oceanography, 52(6): 2710–2714. doi: 10.4319/lo.2007.52.6.2710
    Kashiwabara T, Takahashi Y, Tanimizu M. 2009. A XAFS study on the mechanism of isotopic fractionation of molybdenum during its adsorption on ferromanganese oxides. Geochemical Journal, 43(6): e31–e36. doi: 10.2343/geochemj.1.0060
    Koschinsky A, Halbach P. 1995. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica et Cosmochimica Acta, 59(24): 5113–5132. doi: 10.1016/0016-7037(95)00358-4
    Koschinsky A, Hein J R. 2003. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology, 198(3–4): 331–351. doi: 10.1016/S0025-3227(03)00122-1
    Little S H, Sherman D M, Vance D, et al. 2014a. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts. Earth and Planetary Science Letters, 396: 213–222. doi: 10.1016/j.jpgl.2014.04.021
    Little S H, Vance D, McManus J, et al. 2017. Copper isotope signatures in modern marine sediments. Geochimica et Cosmochimica Acta, 212: 253–273. doi: 10.1016/j.gca.2017.06.019
    Little S H, Vance D, Walker-Brown C, et al. 2014b. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125: 673–693. doi: 10.1016/j.gca.2013.07.046
    Lohan M C, Statham P J, Crawford D W. 2002. Total dissolved zinc in the upper water column of the subarctic North East Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(24–25): 5793–5808. doi: 10.1016/S0967-0645(02)00215-1
    Marcus M A, Manceau A, Kersten M. 2004. Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochimica et Cosmochimica Acta, 68(14): 3125–3136. doi: 10.1016/j.gca.2004.01.015
    Maréchal C N, Nicolas E, Douchet C, et al. 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochemistry, Geophysics, Geosystems, 1(5): 1015
    Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1–4): 251–273. doi: 10.1016/S0009-2541(98)00191-0
    Mason T F D, Weiss D J, Chapman J B, et al. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3–4): 170–187. doi: 10.1016/j.chemgeo.2005.04.011
    Mason T F D, Weiss D J, Horstwood M, et al. 2004. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry Part 1: Spectral interferences and their correction. Journal of Analytical Atomic Spectrometry, 19: 209–217. doi: 10.1039/b306958c
    McManus J, Berelson W M, Severmann S, et al. 2006. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochimica et Cosmochimica Acta, 70(18): 4643–4662. doi: 10.1016/j.gca.2006.06.1564
    Moeller K, Schoenberg R, Pedersen R B, et al. 2012. Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for Copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostandards and Geoanalytical Research, 36(2): 177–199. doi: 10.1111/j.1751-908X.2011.00153.x
    Moffett J W, Dupont C. 2007. Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 54(4): 586–595. doi: 10.1016/j.dsr.2006.12.013
    Morel F M M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300(5621): 944–947. doi: 10.1126/science.1083545
    Nägler T F, Neubert N, Böttcher M E, et al. 2011. Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas. Chemical Geology, 289(1–2): 1–11. doi: 10.1016/j.chemgeo.2011.07.001
    Navarrete J U, Borrok D M, Viveros M, et al. 2011. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochimica et Cosmochimica Acta, 75(3): 784–799. doi: 10.1016/j.gca.2010.11.011
    Pasquarello A, Petri I, Salmon P S, et al. 2001. First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. Science, 291(5505): 856–859. doi: 10.1126/science.291.5505.856
    Peacock C L, Sherman D M. 2007. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. American Mineralogist, 92(7): 1087–1092. doi: 10.2138/am.2007.2378
    Pichat S, Douchet C, Albarède F. 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth and Planetary Science Letters, 210(1–2): 167–178. doi: 10.1016/S0012-821X(03)00106-7
    Piper D Z, Williamson M E. 1977. Composition of Pacific Ocean ferromanganese nodules. Marine Geology, 23(4): 285–303. doi: 10.1016/0025-3227(77)90036-6
    Poulson Brucker R L, McManus J, Severmann S, et al. 2009. Molybdenum behavior during early diagenesis: Insights from Mo isotopes. Geochemistry, Geophysics, Geosystems, 10(6): Q06010
    Poulson R L, Siebert C, McManus J, et al. 2006. Authigenic molybdenum isotope signatures in marine sediments. Geology, 34(8): 617–620. doi: 10.1130/G22485.1
    Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy & Geochemistry, 55(1): 65–111
    Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324–325: 19–27. doi: 10.1016/j.chemgeo.2012.05.012
    Siebert C, McManus J, Bice A, et al. 2006. Molybdenum isotope signatures in continental margin marine sediments. Earth and Planetary Science Letters, 241(3–4): 723–733. doi: 10.1016/j.jpgl.2005.11.010
    Takano S, Tanimizu M, Hirata T, et al. 2014. Isotopic constraints on biogeochemical cycling of copper in the ocean. Nature Communications, 5(1): 5663. doi: 10.1038/ncomms6663
    Thompson C M, Ellwood M J. 2014. Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 165: 1–9. doi: 10.1016/j.marchem.2014.06.009
    Thompson C M, Ellwood M J, Wille M. 2013. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater. Analytica Chimica Acta, 775: 106–113. doi: 10.1016/j.aca.2013.03.020
    Valley J W, Cole D R. 2001. Reviews in Mineralogy and Geochemistry Volume 43: Stable Isotope Geochemistry. Washington, DC: Mineralogical Society of America, 87–94
    Vance D, Archer C, Bermin J, et al. 2008. The copper isotope geochemistry of rivers and the oceans. Earth and Planetary Science Letters, 274(1–2): 204–213. doi: 10.1016/j.jpgl.2008.07.026
    Vance D, Zhao Y, Cullen J, et al. 2012. Zinc isotopic data from the NE Pacific reveals shallow recycling. Mineral Mag, 76: 1486
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (121) PDF downloads(7) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint