Volume 40 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Meiqi Zhang, Shuangwen Sun, Lin Liu, Yongcan Zu, Lin Feng. Decadal variation of thermocline-sea surface temperature feedback in the tropical Indian Ocean and the underlying mechanisms[J]. Acta Oceanologica Sinica, 2021, 40(11): 31-38. doi: 10.1007/s13131-021-1950-8
Citation: Meiqi Zhang, Shuangwen Sun, Lin Liu, Yongcan Zu, Lin Feng. Decadal variation of thermocline-sea surface temperature feedback in the tropical Indian Ocean and the underlying mechanisms[J]. Acta Oceanologica Sinica, 2021, 40(11): 31-38. doi: 10.1007/s13131-021-1950-8

Decadal variation of thermocline-sea surface temperature feedback in the tropical Indian Ocean and the underlying mechanisms

doi: 10.1007/s13131-021-1950-8
Funds:  The National Natural Science Foundation of China under contract Nos 41976021, 41676020, 41876028 and 41876030; the Taishan Scholars Programs of Shandong Province under contract Nos tsqn201909165 and ts20190963; the Global Change and Air-Sea Interaction Program under contract No. GASI-04-QYQH-03.
More Information
  • Corresponding author: Email: ssun@fio.org.cn
  • Received Date: 2021-05-05
  • Accepted Date: 2021-08-06
  • Available Online: 2021-11-23
  • Publish Date: 2021-11-30
  • The thermocline-sea surface temperature (SST) feedback is the most important component of the Bjerknes feedback, which plays an important role in the development of the air-sea coupling modes of the Indian Ocean. The thermocline-SST feedback in the Indian Ocean has experienced significant decadal variations over the last 40 a. The feedback intensified in the late twentieth century and then weakened during the hiatus in global warming at the early twenty-first century. The thermocline-SST feedback is most prominent in the southeastern and southwestern Indian Ocean. Although the decadal variations of feedback are similar in these two regions, there are still differences in the underlying mechanisms. The decadal variations of feedback in the southeastern Indian Ocean are dominated by variations in the depth of the thermocline, which are modulated by equatorial zonal wind anomalies. Whereas the decadal variation of feedback in the southwestern Indian Ocean is mainly controlled by the intensity of upwelling and thermocline depth in winter and spring, respectively. The upwelling and thermocline depth are both affected by wind stress curl anomalies over the southeastern Indian Ocean, which excite anomalous Ekman pumping and influence the southwestern Indian Ocean through westward propagating Rossby waves.
  • loading
  • [1]
    Annamalai H, Murtugudde R, Potemra J, et al. 2003. Coupled dynamics over the Indian Ocean: spring initiation of the Zonal Mode. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(12–13): 2305–2330,
    Balmaseda M A, Mogensen K, Weaver A T. 2013. Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674): 1132–1161. doi: 10.1002/qj.2063
    Behringer D, Xue Yan. 2004. Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting. Seattle, Washington
    Bjerknes J. 1969. Atmospheric teleconnections from the equatorial pacific. Monthly Weather Review, 97(3): 163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
    Cadet D L. 1985. The southern oscillation over the Indian Ocean. Journal of Climatology, 5(2): 189–212. doi: 10.1002/joc.3370050206
    Cai Wenju, Zheng Xiaotong, Weller E, et al. 2013. Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geoscience, 6(12): 999–1007. doi: 10.1038/ngeo2009
    Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136(8): 2999–3017. doi: 10.1175/2007mwr1978.1
    Dong L, McPhaden M J. 2018. Unusually warm Indian Ocean sea surface temperatures help to arrest development of El Niño in 2014. Scientific Reports, 8(1): 2249. doi: 10.1038/s41598-018-20294-4
    Du Yan, Cai Wenju, Wu Yanling. 2013. A new type of the Indian Ocean Dipole since the mid-1970s. Journal of Climate, 26(3): 959–972. doi: 10.1175/jcli-d-12-00047.1
    Easterling D R, Wehner M F. 2009. Is the climate warming or cooling?. Geophysical Research Letters, 36(8): L08706. doi: 10.1029/2009gl037810
    Good S A, Martin M J, Rayner N A. 2013. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12): 6704–6716. doi: 10.1002/2013JC009067
    Han Weiqing, Meehl G A, Hu Aixue. 2006. Interpretation of tropical thermocline cooling in the Indian and Pacific oceans during recent decades. Geophysical Research Letters, 33(23): L23615. doi: 10.1029/2006gl027982
    Hermes J C, Reason C J C. 2008. Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. Journal of Geophysical Research: Oceans, 113(C4): C04035. doi: 10.1029/2007jc004363
    Jin Feifei, Kim S T, Bejarano L. 2006. A coupled-stability index for ENSO. Geophysical Research Letters, 33(23): L23708. doi: 10.1029/2006gl027221
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    Kerr R A. 2009. Climate change. What happened to global warming? Scientists say just wait a bit. Science, 326(5949): 28–29
    Kim S T, Jeong H I, Jin Feifei. 2017. Mean bias in seasonal forecast model and ENSO prediction error. Scientific Reports, 7(1): 6029. doi: 10.1038/s41598-017-05221-3
    Lee S K, Park W, Baringer M O, et al. 2015. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8(6): 445–449. doi: 10.1038/ngeo2438
    Liu Lin, Yu Weidong, Li T. 2011. Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean Dipole diagnosed from 23 WCRP CMIP3 models. Journal of Climate, 24(18): 4941–4958. doi: 10.1175/2011jcli4041.1
    Neelin J D, Battisti D S, Hirst A C, et al. 1998. ENSO theory. Journal of Geophysical Research: Oceans, 103(C7): 14261–14290. doi: 10.1029/97jc03424
    Ng B, Cai Wenju, Cowan T, et al. 2018. Influence of internal climate variability on Indian Ocean Dipole properties. Scientific Reports, 8(1): 13500. doi: 10.1038/s41598-018-31842-3
    Ng B, Cai Wenju, Walsh K. 2014. The role of the SST-thermocline relationship in Indian Ocean Dipole skewness and its response to global warming. Scientific Reports, 4: 6034. doi: 10.1038/srep06034
    Nieves V, Willis J K, Patzert W C. 2015. Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, 349(6247): 532–535. doi: 10.1126/science.aaa4521
    Ren Hongli, Jin Feifei. 2013. Recharge oscillator mechanisms in two types of ENSO. Journal of Climate, 26(17): 6506–6523. doi: 10.1175/jcli-d-12-00601.1
    Saji N H, Goswami B N, Vinayachandran P N, et al. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401(6751): 360–363
    Stan C, Straus D M, Frederiksen J S, et al. 2017. Review of tropical-extratropical teleconnections on intraseasonal time scales. Reviews of Geophysics, 55(4): 902–937. doi: 10.1002/2016rg000538
    Trenary L L, Han Weiqing. 2008. Causes of decadal subsurface cooling in the tropical Indian Ocean during 1961–2000. Geophysical Research Letters, 35(17): L17602. doi: 10.1029/2008gl034687
    Xiang Baoqiang, Wang Bin, Ding Qinghua, et al. 2012. Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Climate Dynamics, 39(6): 1413–1430. doi: 10.1007/s00382-011-1164-4
    Xie Shangping, Annamalai H, Schott F A, et al. 2002. Structure and mechanisms of south Indian Ocean climate variability. Journal of Climate, 15(8): 864–878. doi: 10.1175/1520-0442(2002)015<0864:Samosi>2.0.Co;2
    Xie Shangping, Du Yan, Huang Gang, et al. 2010. Decadal shift in El Niño influences on Indo–Western Pacific and East Asian climate in the 1970s. Journal of Climate, 23(12): 3352–3368. doi: 10.1175/2010jcli3429.1
    Yuan Xinyi, Jin Feifei, Zhang Wenjun. 2020. A concise and effective expression relating subsurface temperature to the thermocline in the equatorial Pacific. Geophysical Research Letters, 47(15): e2020GL087848. doi: 10.1029/2020gl087848
    Zelle H, Appeldoorn G, Burgers G, et al. 2004. The relationship between sea surface temperature and thermocline depth in the eastern equatorial Pacific. Journal of Physical Oceanography, 34(3): 643–655. doi: 10.1175/2523.1
    Zheng Xiaotong, Xie Shangping, Vecchi G A, et al. 2010. Indian Ocean Dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. Journal of Climate, 23(5): 1240–1253. doi: 10.1175/2009jcli3326.1
    Zhu Xiaoting, Chen Shengli, Greatbatch R J, et al. 2021. Role of thermocline feedback in the increasing occurrence of Central Pacific ENSO. Regional Studies in Marine Science, 41: 101584. doi: 10.1016/j.rsma.2020.101584
    Zhu Jieshun, Kumar A, Huang Bohua. 2015. The relationship between thermocline depth and SST anomalies in the eastern equatorial Pacific: Seasonality and decadal variations. Geophysical Research Letters, 42(11): 4507–4515. doi: 10.1002/2015gl064220
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (229) PDF downloads(22) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint