Volume 41 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
Yong Wang, Jun Li, Zhanfei Wei, Qingmei Li, Yingli Zhou, Wenli Li, Jun Chen, Suixue Wang, Yongzhi Xin, Aiqun Zhang. In situ cultivation of deep-sea water with bicarbonate fueled a different microbial community[J]. Acta Oceanologica Sinica, 2022, 41(12): 98-104. doi: 10.1007/s13131-021-1959-z
Citation: Yong Wang, Jun Li, Zhanfei Wei, Qingmei Li, Yingli Zhou, Wenli Li, Jun Chen, Suixue Wang, Yongzhi Xin, Aiqun Zhang. In situ cultivation of deep-sea water with bicarbonate fueled a different microbial community[J]. Acta Oceanologica Sinica, 2022, 41(12): 98-104. doi: 10.1007/s13131-021-1959-z

In situ cultivation of deep-sea water with bicarbonate fueled a different microbial community

doi: 10.1007/s13131-021-1959-z
Funds:  The Hainan Provincial Natural Science Foundation of China under contract No. 322CXTD531; the National Key Research and Development Program of China under contract Nos 2018YFC0310005 and 2016YFC0302504.
More Information
  • Corresponding author: E-mail: wangyong@sz.tsinghua.edu.cn
  • Received Date: 2021-07-30
  • Accepted Date: 2021-11-05
  • Available Online: 2022-09-02
  • Publish Date: 2022-12-30
  • Some deep-sea microbes may incorporate inorganic carbon to reduce CO2 emission to upper layer and atmosphere. How the microbial inhabitants can be affected under addition of bicarbonate has not been studied using in situ fixed and lysed samples. In this study, we cultivated 40 L natural bottom water at ~1 000 m depth with a final concentration of 0.1 mmol/L bicarbonate for 40 min and applied multiple in situ nucleic acids collection (MISNAC) apparatus for nucleic acids extraction from the cultivation. Our classification result of the cultivation sample showed a distinct microbial community structure, compared with the samples obtained by Niskin bottle and six working units of MISNAC. Except for notable enrichment of Alteromonas, we detected prevalence of Asprobacter, Ilumatobacter and Saccharimonadales in the cultivation. Deep-sea lineages of Euryarchaeota, SAR406, SAR202 and SAR324 were almost completely absent from the cultivation and Niskin samples. This study revealed the dominant microbes affected by bicarbonate addition and Niskin sampling, which suggested rapid responses of deep-sea microbes to the environmental changes.
  • loading
  • Batinovic S, Rose J J A, Ratcliffe J, et al. 2021. Cocultivation of an ultrasmall environmental parasitic bacterium with lytic ability against bacteria associated with wastewater foams. Nature Microbiology, 6(6): 703–711. doi: 10.1038/s41564-021-00892-1
    Bolyen E, Rideout J R, Dillon M R, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8): 852–857. doi: 10.1038/s41587-019-0209-9
    Calleja M L, Al-Otaibi N, Morán X A G. 2019. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Scientific Reports, 9(1): 4690. doi: 10.1038/s41598-019-40753-w
    Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15): 1972–1973. doi: 10.1093/bioinformatics/btp348
    Caporaso J G, Kuczynski J, Stombaugh J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7(5): 335–336. doi: 10.1038/nmeth.f.303
    Dixon P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6): 927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x
    Edgar R C. 2018. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics, 34(14): 2371–2375. doi: 10.1093/bioinformatics/bty113
    Huang Jiaomei, Wang Yong. 2020. Genomic differences within the phylum Marinimicrobia: from waters to sediments in the Mariana Trench. Marine Genomics, 50: 100699. doi: 10.1016/j.margen.2019.100699
    Ivars-Martinez E, Martin-Cuadrado A B, D’Auria G, et al. 2008. Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. The ISME Journal, 2(12): 1194–1212. doi: 10.1038/ismej.2008.74
    Jin Long, Ko S R, Lee C S, et al. 2017. Asprobacter aquaticus gen. nov., sp. nov., a prosthecate alphaproteobacterium isolated from fresh water. International Journal of Systematic and Evolutionary Microbiology, 67(11): 4443–4448. doi: 10.1099/ijsem.0.002311
    Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772–780. doi: 10.1093/molbev/mst010
    La Cono V, Ruggeri G, Azzaro M, et al. 2018. Contribution of bicarbonate assimilation to carbon pool dynamics in the deep Mediterranean Sea and cultivation of actively nitrifying and CO2-fixing bathypelagic prokaryotic consortia. Frontiers in Microbiology, 9: 3. doi: 10.3389/fmicb.2018.00003
    Leprich D J, Flood B E, Schroedl P R, et al. 2021. Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. The ISME Journal, 15(7): 2043–2056. doi: 10.1038/s41396-021-00903-3
    Letunic I, Bork P. 2007. Interactive Tree of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics, 23(1): 127–128. doi: 10.1093/bioinformatics/btl529
    Li Wenli, Huang Jiaomei, Zhang Peiwei, et al. 2019. Periodic and spatial spreading of alkanes and Alcanivorax bacteria in deep waters of the Mariana Trench. Applied and Environmental Microbiology, 85(3): e02089–18
    Li Yuanhui, Tsui T F. 1971. The solubility of CO2 in water and sea water. Journal of Geophysical Research, 76(18): 4203–4207. doi: 10.1029/JC076i018p04203
    Matsumoto A, Kasai H, Matsuo Y, et al. 2009. Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. The Journal of General and Applied Microbiology, 55(3): 201–205. doi: 10.2323/jgam.55.201
    McNichol J, Stryhanyuk H, Sylva S P, et al. 2018. Primary productivity below the seafloor at deep-sea hot springs. Proceedings of the National Academy of Sciences of the United States of America, 115(26): 6756–6761. doi: 10.1073/pnas.1804351115
    Pachiadaki M G, Sintes E, Bergauer K, et al. 2017. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 358(6366): 1046–1051. doi: 10.1126/science.aan8260
    Patel R K, Jain M. 2012. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE, 7(2): e30619. doi: 10.1371/journal.pone.0030619
    Perner M, Bach W, Hentscher M, et al. 2009. Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5°S on the Mid-Atlantic Ridge. Environmental Microbiology, 11(10): 2526–2541. doi: 10.1111/j.1462-2920.2009.01978.x
    Perner M, Gonnella G, Hourdez S, et al. 2013. In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field. Environmental Microbiology, 15(5): 1551–1560. doi: 10.1111/1462-2920.12038
    Quaiser A, Zivanovic Y, Moreira D, et al. 2011. Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. The ISME Journal, 5(2): 285–304. doi: 10.1038/ismej.2010.113
    Quast C, Pruesse E, Yilmaz P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1): D590–D596
    Rognes T, Flouri T, Nichols B, et al. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4: e2584. doi: 10.7717/peerj.2584
    Seibel B A, Walsh P J. 2003. Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. The Journal of Experimental Biology, 206(4): 641–650. doi: 10.1242/jeb.00141
    Sheik C S, Jain S, Dick G J. 2014. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environmental Microbiology, 16(1): 304–317. doi: 10.1111/1462-2920.12165
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312–1313. doi: 10.1093/bioinformatics/btu033
    Varela M M, Van Aken H M, Sintes E, et al. 2011. Contribution of Crenarchaeota and Bacteria to autotrophy in the North Atlantic interior. Environmental Microbiology, 13(6): 1524–1533. doi: 10.1111/j.1462-2920.2011.02457.x
    Wang Yong, Gao Zhaoming, Li Jun, et al. 2019a. Hadal water sampling by in situ microbial filtration and fixation (ISMIFF) apparatus. Deep-Sea Research Part I: Oceanographic Research Papers, 144: 132–137. doi: 10.1016/j.dsr.2019.01.009
    Wang Yong, Huang Jiaomei, Cui Guojie, et al. 2019b. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environmental Microbiology, 21(2): 716–729. doi: 10.1111/1462-2920.14518
    Wang Yong, Qian Peiyuan. 2009. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE, 4(10): e7401. doi: 10.1371/journal.pone.0007401
    Wei Zhanfei, Li Wenli, Huang Jiaomei, et al. 2020a. Metagenomic studies of SAR202 bacteria at the full-ocean depth in the Mariana Trench. Deep-Sea Research Part I: Oceanographic Research Papers, 165: 103396. doi: 10.1016/j.dsr.2020.103396
    Wei Zhanfei, Li Wenli, Li Jun, et al. 2020b. Multiple in situ nucleic acid collections (MISNAC) from deep-sea waters. Frontiers in Marine Science, 7: 81. doi: 10.3389/fmars.2020.00081
    Worden A Z, Follows M J, Giovannoni S J, et al. 2015. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science, 347(6223): 1257594. doi: 10.1126/science.1257594
    Yakimov M M, La Cono V, Smedile F, et al. 2014. Heterotrophic bicarbonate assimilation is the main process of de novo organic carbon synthesis in hadal zone of the Hellenic Trench, the deepest part of Mediterranean Sea. Environmental Microbiology Reports, 6(6): 709–722. doi: 10.1111/1758-2229.12192
    Zhang Yao, Qin Wei, Hou Lei, et al. 2020. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proceedings of the National Academy of Sciences of the United States of America, 117(9): 4823–4830. doi: 10.1073/pnas.1912367117
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (334) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return