Volume 41 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Chenhui Xiang, Yao Li, Zhixin Ke, Gang Li, Yadong Huang, Xinying Su, Liangmin Huang, Xinyu Song. Effects of daily nitrogen and phosphorus input on planktonic community metabolism in a semi-enclosed bay by mesocosm experiment[J]. Acta Oceanologica Sinica, 2022, 41(8): 99-110. doi: 10.1007/s13131-022-1986-4
Citation: Chenhui Xiang, Yao Li, Zhixin Ke, Gang Li, Yadong Huang, Xinying Su, Liangmin Huang, Xinyu Song. Effects of daily nitrogen and phosphorus input on planktonic community metabolism in a semi-enclosed bay by mesocosm experiment[J]. Acta Oceanologica Sinica, 2022, 41(8): 99-110. doi: 10.1007/s13131-022-1986-4

Effects of daily nitrogen and phosphorus input on planktonic community metabolism in a semi-enclosed bay by mesocosm experiment

doi: 10.1007/s13131-022-1986-4
Funds:  the National Natural Science Foundation of China under contract No. 41890853; the Fund of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0404; the Science & Technology Basic Resources Investigation Program of China under contract No. 2018FY100105; the Fund of Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences under contract No. ISEE2018ZD02; the National Key Basic Research Program of China (973 Program) under contract No. 2015CB452904; the Development Project of China under contract Nos 2017YFC0506302 and 2016YFC0502805.
More Information
  • Corresponding author: E-mail: songxy@scsio.ac.cn
  • Received Date: 2021-10-11
  • Accepted Date: 2022-01-13
  • Available Online: 2022-04-22
  • Publish Date: 2022-08-15
  • Planktonic metabolism plays an important role in affecting the energy transportation and carbon cycle of the marine ecosystem. However, its regulation mechanism remains unclear under the continuously exogenous nutrient inputs in nearshore waters. In this study, a mesocosm experiment was conducted in a semi-enclosed bay, the Daya Bay, to explore the responses of plankton metabolic balance and community structure to a concentration gradient of daily nitrogen and phosphorus inputs. The results showed that nutrient enrichments promoted phytoplankton biomass, total primary production, and community respiration, and the promoting effect enhanced alongwith the increase of nutrient concentration. However, the net community production fluctuated more violently between autotrophic and heterotrophic with the increase of nutrient inputs and tended to be more heterotrophic from the 5th day to the 10th day of the experiment. In addition, the daily flux of nitrogen and phosphorus, 2 μmol/(L·d) and 0.066 μmol/(L·d), respectively, could be regarded as a potential threshold for ecosystem stability and health, since most of the ecological characteristics related to plankton structure and function have undergone significant changes when the nutrient level is higher than that. In the nearshore enclosed or semi-enclosed waters, nutrient from continuous terrigenous input is likely to be concentrated and exceed this level, indicating the ecological risks due to the metabolic unbalance and the deterioration of plankton community structure.
  • loading
  • [1]
    Adolf J E, Stoecker D K, Harding L W Jr. 2006. The balance of autotrophy and heterotrophy during mixotrophic growth of Karlodinium micrum (Dinophyceae). Journal of Plankton Research, 28(8): 737–751. doi: 10.1093/plankt/fbl007
    [2]
    Agustí S, Satta M P, Mura M P. 2004. Summer community respiration and pelagic metabolism in upper surface Antarctic waters. Aquatic Microbial Ecology, 35(2): 197–205. doi: 10.3354/ame035197
    [3]
    Agusti S, Vigoya L, Duarte C M. 2018. Annual plankton community metabolism in estuarine and coastal waters in Perth (Western Australia). PeerJ, 6: e5081. doi: 10.7717/peerj.5081
    [4]
    Arbones B, Castro C G, Alonso-Pérez F, et al. 2008. Phytoplankton size structure and water column metabolic balance in a coastal upwelling system: the Ría de Vigo, NW Iberia. Aquatic Microbial Ecology, 50(2): 169–179. doi: 10.3354/ame01160
    [5]
    Boesch D F. 2002. Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries, 25(4): 886–900. doi: 10.1007/BF02804914
    [6]
    Brussaard C P D, Mari X, Van Bleijswijk J D L, et al. 2005. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae, 4(5): 875–893. doi: 10.1016/j.hal.2004.12.012
    [7]
    Caffrey J M, Murrell M C, Amacker K S, et al. 2014. Seasonal and inter-annual patterns in primary production, respiration, and net ecosystem metabolism in three estuaries in the northeast gulf of Mexico. Estuaries and Coasts, 37(S1): S222–S241. doi: 10.1007/s12237-013-9701-5
    [8]
    Cai Weijun. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?. Annual Review of Marine Science, 3: 123–145,
    [9]
    Chen Chen-Tung Arthur, Borges A V. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(8−10): 578–590. doi: 10.1016/j.dsr2.2009.01.001
    [10]
    Conley D J, Markager S, Andersen J, et al. 2002. Coastal eutrophication and the Danish national aquatic monitoring and assessment program. Estuaries, 25(4): 848–861. doi: 10.1007/BF02804910
    [11]
    Cotovicz Jr L C, Knoppers B A, Brandini N, et al. 2015. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences, 12(20): 6125–6146. doi: 10.5194/bg-12-6125-2015
    [12]
    Davis J C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. Journal of the Fisheries Research Board of Canada, 32(12): 2295–2332. doi: 10.1139/f75-268
    [13]
    del Giorgio P A, Duarte C M. 2002. Respiration in the open ocean. Nature, 420(6914): 379–384. doi: 10.1038/nature01165
    [14]
    del Giorgio P A, Peters R H. 1994. Patterns in planktonic P: R ratios in lakes: Influence of lake trophy and dissolved organic carbon. Limnology and Oceanography, 39: 772–87. doi: 10.4319/lo.1994.39.4.0772
    [15]
    del Giorgio P A, Williams P J L B. 2005. Respiration in Aquatic Ecosystems. New York: Oxford University Press
    [16]
    Dodds W K, Cole J J. 2007. Expanding the concept of trophic state in aquatic ecosystems: it’s not just the autotrophs. Aquatic Sciences, 69(4): 427–439. doi: 10.1007/s00027-007-0922-1
    [17]
    Dodds W K, Johnson K R, Priscu J C. 1989. Simultaneous nitrogen and phosphorus deficiency in natural phytoplankton assemblages: theory, empirical evidence, and implications for lake management. Lake and Reservoir Management, 5(1): 21–26. doi: 10.1080/07438148909354677
    [18]
    Duarte C M, Agustí S, Vaqué D. 2004. Controls on planktonic metabolism in the Bay of Blanes, northwestern Mediterranean littoral. Limnology and Oceanography, 49(6): 2162–2170. doi: 10.4319/lo.2004.49.6.2162
    [19]
    Duarte C M, Regaudie-de-Gioux A. 2009. Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnology and Oceanography, 54(3): 1015–1022. doi: 10.4319/lo.2009.54.3.1015
    [20]
    Duarte C M, Regaudie-de-Gioux A, Arrieta J M, et al. 2013. The oligotrophic ocean is heterotrophic. Annual Review of Marine Science, 5: 551–569. doi: 10.1146/annurev-marine-121211-172337
    [21]
    Ducklow H W, Doney S C. 2013. What is the metabolic state of the oligotrophic ocean? A debate. The Annual Review of Marine Science, 5: 525–533. doi: 10.1146/annurev-marine-121211-172331
    [22]
    Ferreira V, Elosegi A, Tiegs S D, et al. 2020. Organic matter decomposition and ecosystem metabolism as tools to assess the functional integrity of streams and rivers—a systematic review. Water, 12(12): 3523. doi: 10.3390/w12123523
    [23]
    Finkel Z V, Irwin A J, Schofield O. 2004. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton. Marine Ecology Progress Series, 273: 269–279. doi: 10.3354/meps273269
    [24]
    Ganf G G, Viner A B. 1973. Ecological stability in a shallow equatorial lake (Lake George, Uganda). Proceedings of the Royal Society B: Biological Sciences, 184(1076): 321–346. doi: 10.1098/rspb.1973.0051
    [25]
    Grasshoff K, Ehrhardt M, Kremling K, 1983. Methods of Seawater Analysis. 2nd ed. Weinheim: Verlag Chemie
    [26]
    Huang Xiaoping, Huang Liangmin, Song Jinming, et al. 2019. Process and Mechanism of Nutrient Inputs on Bay Ecological Environment (in Chinese). Beijing: Science Press
    [27]
    Huang Bangqin, Lan Wenlu, Cao Zhenrui, et al. 2008. Spatial and temporal distribution of nanoflagellates in the northern South China Sea. Hydrobiologia, 605(1): 143–157. doi: 10.1007/s10750-008-9330-3
    [28]
    Huete-Stauffer T M, Morán X A G. 2012. Dynamics of heterotrophic bacteria in temperate coastal waters: similar net growth but different controls in low and high nucleic acid cells. Aquatic Microbial Ecology, 67(3): 211–223. doi: 10.3354/ame01590
    [29]
    Jiang Tao, Chen Feiyu, Yu Zonghe, et al. 2016. Size-dependent depletion and community disturbance of phytoplankton under intensive oyster mariculture based on HPLC pigment analysis in Daya Bay, South China Sea. Environmental Pollution, 219: 804–814. doi: 10.1016/j.envpol.2016.07.058
    [30]
    Jiang Xin, Li Jiajun, Ke Zhixin, et al. 2017. Characteristics of picoplankton abundances during a Thalassiosira diporocyclus bloom in the Taiwan Bank in late winter. Marine Pollution Bulletin, 117(1−2): 66–74. doi: 10.1016/j.marpolbul.2017.01.042
    [31]
    Joint I, Henriksen P, Fonnes G A, et al. 2002. Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms. Aquatic Microbial Ecology, 29(2): 145–159. doi: 10.3354/ame029145
    [32]
    Ke Zhixin, Tan Yehui, Huang Liangmin, et al. 2019. Significantly depleted 15N in suspended particulate organic matter indicating a strong influence of sewage loading in Daya Bay, China. Science of the Total Environment, 650: 759–768. doi: 10.1016/j.scitotenv.2018.09.076
    [33]
    Kemp W M, Smith E M, Marvin-DiPasquale M, et al. 1997. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Marine Ecology Progress Series, 150: 229–248. doi: 10.3354/meps150229
    [34]
    Krause-Jensen D, Markager S, Dalsgaard T. 2012. Benthic and pelagic primary production in different nutrient regimes. Estuaries and Coasts, 35(2): 527–545. doi: 10.1007/s12237-011-9443-1
    [35]
    Lagaria A, Psarra S, Lefèvre D, et al. 2011. The effects of nutrient additions on particulate and dissolved primary production and metabolic state in surface waters of three Mediterranean eddies. Biogeosciences, 8(9): 2595–2607. doi: 10.5194/bg-8-2595-2011
    [36]
    Li Yao, Xiang Chenhui, Jiang Zhijian, et al. 2021. Production and metabolism characteristics of planktonic community and their influencing factors in Daya Bay during summer. Journal of Tropical Oceanography, 40(6): 83–92
    [37]
    Liu Huaxue, Hu Zifeng, Huang Liangmin, et al. 2013. Biological response to typhoon in northern South China Sea: A case study of “Koppu”. Continental Shelf Research, 68: 123–132. doi: 10.1016/j.csr.2013.08.009
    [38]
    López-Sandoval D C, Rowe K, Carillo-de-Albonoz P, et al. 2019. Rates and drivers of Red Sea plankton community metabolism. Biogeosciences, 16(15): 2983–2995. doi: 10.5194/bg-16-2983-2019
    [39]
    Malone T C. 1991. River flow, phytoplankton production and oxygen depletion in Chesapeake Bay. Geological Society, London, Special Publications, 58(1): 83–93
    [40]
    Malone T, Azzaro M, Bode A, et al. 2015. Chapter 6: primary production, cycling of nutrients, surface layer and plankton. In: Nations U, ed. First Global Integrated Marine Assessment, Also Known as the First World Ocean Assessment: World Ocean Assessment I. Cambridge: Cambridge University Press, 119–148
    [41]
    Marañón E. 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Annual Review of Marine Science, 7(1): 241–264. doi: 10.1146/annurev-marine-010814-015955
    [42]
    Morel F M M. 1987. Kinetics of nutrient uptake and growth in phytoplankton. Journal of Phycology, 23(2): 137–150. doi: 10.1111/j.1529-8817.1987.tb04436.x
    [43]
    Nixon S W, Buckley B A, Granger S L, et al. 2008. Nitrogen and phosphorus inputs to narragansett bay: past, present, and future. In: Desbonnet A, Costa-Pierce B A, eds. Science for Ecosystem-Based Management. New York: Springer, 101–175
    [44]
    Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamon Press
    [45]
    Qiu Dajun, Huang Liangmin, Zhang Jianlin, et al. 2010. Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea. Continental Shelf Research, 30(2): 177–186. doi: 10.1016/j.csr.2009.10.015
    [46]
    Rochelle-Newall E J, Winter C, Barrón C, et al. 2007. Artificial neural network analysis of factors controlling ecosystem metabolism in coastal systems. Ecological Applications, 17(S5): S185–S196. doi: 10.1890/05-1769.1
    [47]
    Scheffer M, Carpenter S, Foley J A, et al. 2001. Catastrophic shifts in ecosystems. Nature, 413(6856): 591–596. doi: 10.1038/35098000
    [48]
    Serret P, Fernández E, Sostres J A, et al. 1999. Seasonal compensation of microbial production and respiration in a temperate sea. Marine Ecology Progress Series, 187: 43–57. doi: 10.3354/meps187043
    [49]
    Serret P, Robinson C, Aranguren-Gassis M, et al. 2015. Both respiration and photosynthesis determine the scaling of plankton metabolism in the oligotrophic ocean. Nature Communications, 6: 6961. doi: 10.1038/ncomms7961
    [50]
    Smith E M, Kemp W M. 2003. Planktonic and bacterial respiration along an estuarine gradient: responses to carbon and nutrient enrichment. Aquatic Microbial Ecology, 30(3): 251–261. doi: 10.3354/ame030251
    [51]
    Smith S V, Mackenzie F T. 1987. The ocean as a net heterotrophic system: implications From the carbon biogeochemical cycle. Global Biogeochemical Cycles, 1(3): 187–198. doi: 10.1029/GB001i003p00187
    [52]
    Sommer U, Lewandowska A. 2011. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology, 17(1): 154–162. doi: 10.1111/j.1365-2486.2010.02182.x
    [53]
    Song Xingyu, Huang Liangmin, Zhang Jianlin, et al. 2004. Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer. Marine Pollution Bulletin, 49(11−12): 1036–1044. doi: 10.1016/j.marpolbul.2004.07.008
    [54]
    Song Xingyu, Huang Liangmin, Zhang Jianlin, et al. 2009. Harmful algal blooms (HABs) in Daya Bay, China: an in situ study of primary production and environmental impacts. Marine Pollution Bulletin, 58(9): 1310–1318. doi: 10.1016/j.marpolbul.2009.04.030
    [55]
    Song Xingyu, Liu Huaxue, Zhong Yu, et al. 2015. Bacterial growth efficiency in a partly eutrophicated bay of South China Sea: implication for anthropogenic impacts and potential hypoxia events. Ecotoxicology, 24(7−8): 1529–1539. doi: 10.1007/s10646-015-1497-6
    [56]
    Song Xingyu, Tan Meiting, Xu Ge, et al. 2019. Is phosphorus a limiting factor to regulate the growth of phytoplankton in Daya Bay, northern South China Sea: a mesocosm experiment. Ecotoxicology, 28(5): 559–568. doi: 10.1007/s10646-019-02049-7
    [57]
    Stange P, Bach L T, Le Moigne F A C, et al. 2017. Quantifying the time lag between organic matter production and export in the surface ocean: implications for estimates of export efficiency. Geophysical Research Letters, 44(1): 268–276. doi: 10.1002/2016GL070875
    [58]
    Strayer D. 1988. On the limits to secondary production. Limnology and Oceanography, 33(5): 1217–1220. doi: 10.4319/lo.1988.33.5.1217
    [59]
    Sun Cuici, Wang Youshao, Sun Song, et al. 2006. Dynamic analysis of phytoplankton community characteristics in Daya Bay, China. Acta Ecologica Sinica, 26(12): 3948–3958. doi: 10.1016/S1872-2032(07)60005-5
    [60]
    Sun Cuici, Wang Youshao, Wu Meilin, et al. 2011. Seasonal variation of water quality and phytoplankton response patterns in Daya Bay, China. International Journal of Environmental Research and Public Health, 8(7): 2951–2966. doi: 10.3390/ijerph8072951
    [61]
    USEPA. 2000. Ambient Water Quality Criteria for Dissolved Oxygen (Saltwater): Cape Cod to Cape Hatteras. Washington: United States Environmental Protection Agency, 44
    [62]
    Utermöhl H. 1958. Methods of collecting plankton for various purposes are discussed. SIL Communications, 9(1): 1–38
    [63]
    Vázquez-Domínguez E, Vaqué D, Gasol J M. 2007. Ocean warming enhances respiration and carbon demand of coastal microbial plankton. Global Change Biology, 13(7): 1327–1334. doi: 10.1111/j.1365-2486.2007.01377.x
    [64]
    Vidussi F, Mostajir B, Fouilland E, et al. 2011. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnology and Oceanography, 56(1): 206–218. doi: 10.4319/lo.2011.56.1.0206
    [65]
    Wang Youshao, Lou Zhiping, Sun Cuici, et al. 2008. Ecological environment changes in Daya Bay, China, from 1982 to 2004. Marine Pollution Bulletin, 56(11): 1871–1879. doi: 10.1016/j.marpolbul.2008.07.017
    [66]
    Wang Zhaohui, Zhao Jiangang, Zhang Yujuan, et al. 2009. Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea. Journal of Environmental Sciences, 21(9): 1268–1275. doi: 10.1016/S1001-0742(08)62414-6
    [67]
    Watson S B, Zastepa A, Boyer G L, et al. 2017. Algal bloom response and risk management: on-site response tools. Toxicon, 129: 144–152. doi: 10.1016/j.toxicon.2017.02.005
    [68]
    Williams P J L B, Quay P D, Westberry T K, et al. 2013. The oligotrophic ocean is autotrophic. Annual Review of Marine Science, 5: 535–549. doi: 10.1146/annurev-marine-121211-172335
    [69]
    Wilson J, Abboud S, Beman J M. 2017. Primary production, community respiration, and net community production along oxygen and nutrient gradients: environmental controls and biogeochemical feedbacks within and across “marine lakes”. Frontiers in Marine Science, 4: 12. doi: 10.3389/fmars.2017.00012
    [70]
    Wiltshire K H, Malzahn A M, Wirtz K, et al. 2008. Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnology and Oceanography, 53(4): 1294–1302. doi: 10.4319/lo.2008.53.4.1294
    [71]
    Wu Meilin, Wang Youshao. 2007. Using chemometrics to evaluate anthropogenic effects in Daya Bay, China. Estuarine, Coastal and Shelf Science, 72(4): 732–742,
    [72]
    Wu Meilin, Wang Yutu, Cheng Hao, et al. 2020. Phytoplankton community, structure and succession delineated by partial least square regression in Daya Bay, South China Sea. Ecotoxicology, 29(6): 751–761. doi: 10.1007/s10646-020-02188-2
    [73]
    Wu Meilin, Wang Youshao, Wang Yutu, et al. 2017. Scenarios of nutrient alterations and responses of phytoplankton in a changing Daya Bay, South China Sea. Journal of Marine Systems, 165: 1–12. doi: 10.1016/j.jmarsys.2016.09.004
    [74]
    Xiang Chenhui, Tan Yehui, Zhang Huangchen, et al. 2019. The key to dinoflagellate (Noctiluca scintillans) blooming and outcompeting diatoms in winter off Pakistan, northern Arabian Sea. Science of the Total Environment, 694: 133396. doi: 10.1016/j.scitotenv.2019.07.202
    [75]
    Xie Fuwu, Song Xingyu, Tan Yehui, et al. 2019. Impact of simulated warming and nutrients input on plankton community metabolism in Daya Bay. Journal of Tropical Oceanography, 38(2): 48–57
    [76]
    Yang Xi, Tan Yehui, Li Kaizhi, et al. 2020. Long-term changes in summer phytoplankton communities and their influencing factors in Daya Bay, China (1991−2017). Marine Pollution Bulletin, 161: 111694. doi: 10.1016/j.marpolbul.2020.111694
    [77]
    Yin Kedong, Song Xiuxian, Liu Sheng, et al. 2008. Is inorganic nutrient enrichment a driving force for the formation of red tides? A case study of the dinoflagellate Scrippsiella trochoidea in an embayment. Harmful Algae, 8(1): 54–59. doi: 10.1016/j.hal.2008.08.004
    [78]
    Yu Jing, Tang Danling, Oh I S, et al. 2007. Response of harmful algal blooms to environmental changes in Daya Bay, China. Terrestrial Atmospheric and Oceanic Sciences, 18(5): 1011–1027. doi: 10.3319/TAO.2007.18.5.1011(Oc
    [79]
    Zhang Xia, Shi Zhen, Huang Xiaoping, et al. 2017. Abiotic and biotic factors influencing nanoflagellate abundance and distribution in three different seasons in PRE, South China Sea. Continental Shelf Research, 143: 1–8. doi: 10.1016/j.csr.2017.05.012
    [80]
    Zhao Xiufeng, Yang Weifeng, Ma Haoyang, et al. 2019. Seasonal variations in the abundance and sinking flux of biogenic silica in Daya Bay, northern South China Sea. Oceanologia, 61(2): 239–251. doi: 10.1016/j.oceano.2018.11.003
    [81]
    Zhu Aijia, Huang Liangmin, Xu Zhanzhou. 2008. Impacts of nitrogen and phosphorus on phytoplankton community structure in Dapeng’ao area of Daya Bay I. Chlorophyll a and primary productivity. Journal of Tropical Oceanography, 27(1): 38–45
    [82]
    Zwart J A, Solomon C T, Jones S E. 2015. Phytoplankton traits predict ecosystem function in a global set of lakes. Ecology, 96(8): 2257–2264. doi: 10.1890/14-2102.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (335) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return