Volume 41 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Menghan Wang, Zengan Deng. On the role of wave breaking in ocean dynamics under typhoon Matsa in the Bohai Sea, China[J]. Acta Oceanologica Sinica, 2022, 41(9): 1-18. doi: 10.1007/s13131-022-1995-3
Citation: Menghan Wang, Zengan Deng. On the role of wave breaking in ocean dynamics under typhoon Matsa in the Bohai Sea, China[J]. Acta Oceanologica Sinica, 2022, 41(9): 1-18. doi: 10.1007/s13131-022-1995-3

On the role of wave breaking in ocean dynamics under typhoon Matsa in the Bohai Sea, China

doi: 10.1007/s13131-022-1995-3
Funds:  The Grant from Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf under contract No. 2021KF03; the National Natural Science Foundation of China under contract Nos 42176020 and 42076007; the Foundation from Key Laboratory of Marine Environmental Information Technology, Ministry of Natural Resources of China under contract No. 2020GKF-0812; the Tianjin Natural Science Foundation under contract No. 18JCYBJC84900.
More Information
  • Corresponding author: E-mail:dengzengan@163.com
  • Received Date: 2021-07-08
  • Accepted Date: 2021-11-29
  • Available Online: 2022-06-02
  • Publish Date: 2022-08-31
  • The role of wave breaking (WB) in the ocean dynamics in the Bohai Sea, China under typhoon condition is systematically investigated utilizing a coupled wave-current model. The influences of WB on ocean dynamics and processes (mixing coefficient, temperature, mixed layer depth, and current) during the entire typhoon period (including the pre-typhoon, during-typhoon and after-typhoon stages) are comprehensively detected and discussed. Experimental results show that WB greatly enhances the turbulent mixing at about top 10 m depth under typhoon condition, the increase can be up to 10 times that of the normal weather. At the same time, WB generally strengthens the sea surface cooling by ~1.2°C at the during-typhoon stage, about 3 times that in normal weather. The mixed layer depth, is rapidly increased by ~1.6–3.6 m during typhoon due to WB, particularly, the deepening is stronger in the region from 120.5°E to 121.0°E on account of close to the typhoon eye. In addition, WB renders the current speed more uniformly within the entire depth in the Bohai Sea, the change in speed is ~0.2 m/s, whereas the alternation in current vector is generally opposite to the wind direction except for the typhoon eye region, reflecting that WB has an inhibitory effect on the typhoon-forced current change. The effects of WB on vertical mixing coefficient response to the typhoon rapidly, while the impacts of WB on temperature, and mixed layer depth present hysteretic responses to typhoon. Finally, the mechanisms and distribution characteristics of WB-induced mixing and tidal mixing are compared under typhoon condition.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Agrawal Y C, Terray E A, Donelan M A, et al. 1992. Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359(6392): 219–220. doi: 10.1038/359219a0
    [2]
    Blumberg A F, Mellor G L. 1987. A description of a three-dimensional coastal ocean circulation model. In: Heaps N S, ed. Three-Dimensional Coastal Ocean Models. Washington: American Geophysical Union, 1–16. doi: 10.1029/CO004p0001
    [3]
    Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research, 104(C4): 7649–7666. doi: 10.1029/98JC02622
    [4]
    Bye J A T. 1988. The coupling of wave drift and wind velocity profiles. Journal of Marine Research, 46(3): 457–472. doi: 10.1357/002224088785113559
    [5]
    Cao Yu, Deng Zengan, Wang Chenxu. 2019. Impacts of surface gravity waves on summer ocean dynamics in Bohai Sea. Estuarine, Coastal and Shelf Science, 230: 106443,
    [6]
    Charnock H. 1955. Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350): 639–640. doi: 10.1002/qj.49708135027
    [7]
    Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. Journal of Physical Oceanography, 24(12): 2546–2559. doi: 10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2
    [8]
    Deng Zengan, Zhao Yifei. 2020. Impact of tidal mixing on water mass properties and circulation in the Bohai Sea: a typhoon case. Journal of Marine Systems, 206: 103338. doi: 10.1016/j.jmarsys.2020.103338
    [9]
    Denman K L, Miyake M. 1973. Upper layer modification at ocean station Papa: observations and simulation. Journal of Physical Oceanography, 3(2): 185–196. doi: 10.1175/1520-0485(1973)003<0185:ULMAOS>2.0.CO;2
    [10]
    Donelan M A. 1990. Air-sea interaction. In: Le Mehaute B, Hanes D M, eds. The Sea: Ocean Engineering Science. New York: Wiley-Interscience Press, 239–292
    [11]
    Drennan W M, Kahma K K, Terray E A, et al. 1992. Observations of the enhancement of kinetic energy dissipation beneath breaking wind waves. In: Banner M L, Grimshaw R H J, eds. Breaking Waves: IUTAM Symposium Sydney, Australia 1991. Berlin, Heidelberg: Springer, 95–101
    [12]
    Drennan W M, Taylor P K, Yelland M J. 2005. Parameterizing the sea surface roughness. Journal of Physical Oceanography, 35(5): 835–848. doi: 10.1175/JPO2704.1
    [13]
    Feddersen F. 2012. Observations of the surf-zone turbulent dissipation rate. Journal of Physical Oceanography, 42(3): 386–399. doi: 10.1175/JPO-D-11-082.1
    [14]
    Gao Shuanzhu, Meng Zhiyong, Yang Guiming. 2009. Study on the predictability of the recurvature of Typhoon Matsa (0509) in Bohai. Meteorological Monthly, 35(2): 8–14
    [15]
    Gaspar P. 1988. Modeling the seasonal cycle of the upper ocean. Journal of Physical Oceanography, 18(2): 161–180. doi: 10.1175/1520-0485(1988)018<0161:MTSCOT>2.0.CO;2
    [16]
    Gemmrich J R, Farmer D M. 1999. Near-surface turbulence and thermal structure in a wind-driven sea. Journal of Physical Oceanography, 29(9): 480–499. doi: 10.1175/1520-0485(1999)029<0480:NSTATS>2.0.CO;2
    [17]
    Gerbi G P, Trowbridge J H, Terray E A, et al. 2009. Observations of turbulence in the ocean surface boundary layer: energetics and transport. Journal of Physical Oceanography, 39(5): 1077–1096. doi: 10.1175/2008JPO4044.1
    [18]
    Ginis I. 2002. Tropical cyclone-ocean interactions. In: Perrie W, ed. Atmosphere-Ocean Interactions. Southampton: WIT Press
    [19]
    Han Guijun, Li Wei, He Zhongjie, et al. 2006. Assimilated tidal results of tide gauge and TOPEX/POSEIDON data over the China seas using a variational adjoint approach with an onlinear numerical model. Advances in Atmospheric Sciences, 23(3): 449–460
    [20]
    Janssen P A E M. 2001. Reply. Journal of Physical Oceanography, 31(8): 2537–2544. doi: 10.1175/1520-0485(2001)031<2537:R>2.0.CO;2
    [21]
    Jones N L, Monismith S G. 2008. Modeling the influence of wave-enhanced turbulence in a shallow tide- and wind-driven water column. Journal of Geophysical Research, 113(C3): C03009. doi: 10.1029/2007JC004246
    [22]
    Kraus E B, Turner J S. 1967. A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19(1): 98–106. doi: 10.3402/tellusa.v19i1.9753
    [23]
    Liu Jiajun, Zhang Lifeng, Guan Jiping, et al. 2010. Application of ensemble prediction products to the forecast of Typhoon Masta. Meteorological Monthly, 36(5): 21–31
    [24]
    Mellor G L. 2001. One-dimensional, ocean surface layer modeling: a problem and a solution. Journal of Physical Oceanography, 31(3): 790–809. doi: 10.1175/1520-0485(2001)031<0790:ODOSLM>2.0.CO;2
    [25]
    Mellor G, Blumberg A. 2004. Wave breaking and ocean surface layer thermal response. Journal of Physical Oceanography, 34(3): 693–698. doi: 10.1175/2517.1
    [26]
    Mellor G L, Durbin P A. 1975. The structure and dynamics of the ocean surface mixed layer. Journal of Physical Oceanography, 5(4): 718–728. doi: 10.1175/1520-0485(1975)005<0718:TSADOT>2.0.CO;2
    [27]
    Mellor G L, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31(7): 1791–1806. doi: 10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
    [28]
    Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4): 851–875. doi: 10.1029/RG020i004p00851
    [29]
    Meng Qingjun, Li Peiliang, Zhai Fangguo, et al. 2020. The vertical mixing induced by winds and tides over the Yellow Sea in summer: a numerical study in 2012. Ocean Dynamics, 70(7): 847–861. doi: 10.1007/s10236-020-01368-2
    [30]
    Phillips O M. 1977. Dynamtics of the Upper Ocean. Cambridgeshire: Cambridge University Press, 366
    [31]
    Polton J A, Lewis D M, Belcher S E. 2003. The Role of Wave-Induced Coriolis-Stokes Forcing on the Wind-Driven Mixed Layer. Journal of Physical Oceanography, 35(4): 444–457
    [32]
    Ren Huiru, Li Guosheng, Cui Linlin, et al. 2016. Wave climate changes in Bohai Sea related to the East Asian circulation oscillations over the last sixty years. Climatic and Environmental Research, 21(4): 490–502. doi: 10.3878/j.issn.1006-9585.2016.15281
    [33]
    Scully M E, Trowbridge J H, Fisher A W. 2016. Observations of the transfer of energy and momentum to the oceanic surface boundary layer beneath breaking waves. Journal of Physical Oceanography, 46(6): 1823–1837. doi: 10.1175/JPO-D-15-0165.1
    [34]
    Shao Jinchao, Zhao Hui, Shen Chunyan, et al. 2015. Influence of typhoon Matsa on phytoplankton Chlorophyll-a in the Northwest Pacific Ocean offshore and alongshore. Journal of Guangdong Ocean University, 35(4): 67–74
    [35]
    Smith S D, Anderson R J, Oost W A, et al. 1992. Sea surface wind stress and drag coefficients: the hexos results. Boundary-Layer Meteorology, 60(1−2): 109–142. doi: 10.1007/BF00122064
    [36]
    Song Wenpeng. 2009. The analysis of the structure of T-S and the current characteristics in Baohai Sea during winter and summer (in Chinese)[dissertation]. Qingdao: Ocean University of China
    [37]
    Song Yaoling. 2012. Effect of activity characteristics of Typhoon Matsa on aviation meteorological observation and support. Meteorological, Hydrological and Marine Instruments (in Chinese), 29(1): 99–104,
    [38]
    Stacey M W. 1999. Simulation of the wind-forced near-surface circulation in Knight Inlet: a parameterization of the roughness length. Journal of Physical Oceanography, 29(6): 1363–1367. doi: 10.1175/1520-0485(1999)029<1363:SOTWFN>2.0.CO;2
    [39]
    Sun Qun, Guan Changlong, Song Jinbao. 2006. Effect of wave breaking on turbulent energy budgets in ocean surface mixed layer. Oceanologia et Limnologia Sinica, 37(1): 69–74. doi: 10.3321/j.issn:0029-814X.2006.01.011
    [40]
    Terray E A, Donelan M A, Agrawal Y C, et al. 1996. Estimates of kinetic energy dissipation under breaking waves. Journal of Physical Oceanography, 26(5): 792–807. doi: 10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2
    [41]
    Terray E A, Donelan M A, Agrawal Y C, et al. 1997. Reply. Journal of Physical Oceanography, 27(10): 2308–2309. doi: 10.1175/1520-0485(1997)027<2308:R>2.0.CO;2
    [42]
    Terray E A, Drennan W M, Donelan M A. 1999. The vertical structure of shear and dissipation in the ocean surface layer. In: Proceedings of Symposium on the Wind-driven Air-Sea Interface—Electromagnetic and Acoustic Sensing, Wave Dynamics, and Turbulent Fluxes. Sydney: University of New South Wales, 239–245
    [43]
    Toba Y, Smith S D, Ebuchi N. 2001. Historical drag expressions. In: Jones I S F, Toba Y, eds. Wind Stress over the Ocean. New York: Cambridge University Press
    [44]
    Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36: 281–314. doi: 10.1146/annurev.fluid.36.050802.122121
    [45]
    Yablonsky R M, Ginis I. 2008. Improving the ocean initialization of coupled hurricane–ocean models using feature-based data assimilation. Monthly Weather Review, 136(7): 2592–2607. doi: 10.1175/2007MWR2166.1
    [46]
    Yang Yongzeng, Qiao Fangli, Xia Changyong, et al. 2003. Effect of ocean wave momenfum and mixing on upper ocean. Advances in Marine Science, 21(4): 363–368. doi: 10.3969/j.issn.1671-6647.2003.04.001
    [47]
    Zhang Xuefeng, Han Guijun, Wu Xinrong, et al. 2011. Effect of surface wave breaking on upper-ocean structure revealed by assimilating sea temperature data. Journal of Tropical Oceanography, 30(5): 48–54. doi: 10.11978/j.issn.1009-5470.2011.05.048
    [48]
    Zhao Yifei, Deng Zengan, Yu Ting, et al. 2019. Numerical study on tidal mixing in the Bohai Sea. Marine Geodesy, 42(1): 46–63. doi: 10.1080/01490419.2018.1539055
    [49]
    Zhao Xin, Sun Qun. 2013. Influence of reclamation on hydrodynamic environment in Bohai Bay. Advanced Materials Research, 726–731: 3262–3265,
    [50]
    Zippel S F, Thomson J, Farquharson G. 2018. Turbulence from breaking surface waves at a river mouth. Journal of Physical Oceanography, 48(2): 435–453. doi: 10.1175/JPO-D-17-0122.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (402) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return