Volume 41 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Xiaoxuan Sheng, Qi Quan, Jinzhen Yu, Xinyan Mao, Wensheng Jiang. Tide-induced Lagrangian residual velocity and dynamic analysis based on field observations in the inner Xiangshan Bay, China[J]. Acta Oceanologica Sinica, 2022, 41(10): 32-40. doi: 10.1007/s13131-022-2007-3
Citation: Xiaoxuan Sheng, Qi Quan, Jinzhen Yu, Xinyan Mao, Wensheng Jiang. Tide-induced Lagrangian residual velocity and dynamic analysis based on field observations in the inner Xiangshan Bay, China[J]. Acta Oceanologica Sinica, 2022, 41(10): 32-40. doi: 10.1007/s13131-022-2007-3

Tide-induced Lagrangian residual velocity and dynamic analysis based on field observations in the inner Xiangshan Bay, China

doi: 10.1007/s13131-022-2007-3
Funds:  The National Natural Science Foundation of China under contract No. 41630966; the Youth Talent Support Program of the Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. LMEES-YTSP-2018-02-03.
More Information
  • Corresponding author: E-mail: maoxinyan@ouc.edu.cn
  • Received Date: 2021-10-08
  • Accepted Date: 2021-12-20
  • Available Online: 2022-05-17
  • Publish Date: 2022-10-27
  • In the Xiangshan Bay at the east coast of China, coastal marine pollution is conspicuous and severe in recent years. As transport of the pollutants is closely related to the coastal circulation, there is a great practical significance to investigate the circulation in this area. In this work, the surface pattern and vertical profiles of Lagrangian residual velocity (LRV) were studied based on field observation data from the inner Xiangshan Bay. By tracking GPS-GPRS drifters’ trajectories, the surface LRV pattern is going out in the central deep trough and flowing inwards near the shoreside. Combined with data from two mooring stations, vertical profiles of LRV is flowing out at surface and flowing in at the bottom, consistent with the gravitational circulation induced by baroclinic effects at the estuary. However, according to the diagnostic analysis, the main mechanism driving the residual current is barotropic rather than baroclinic. The LRV equation is controlled by the tidally-averaged barotropic pressure gradient force, tidal body force and tidally-averaged turbulent stress, while the tidally-averaged baroclinic pressure gradient force is one order of magnitude less than other forces. Additionally, the tidally mean eddy viscosity coefficient which is used in the expression of tidally-averaged turbulent stress might be not adequate and requires further studies.
  • loading
  • Abbott M R. 1960. Boundary layer effects in estuaries. Journal of Marine Research, 18: 83–100
    Balsells M F P, Grifoll M, Espino M, et al. 2020. Wind-driven hydrodynamics in the shallow, micro-tidal estuary at the Fangar Bay (Ebro Delta, NW Mediterranean Sea). Applied Sciences, 10(19): 6952. doi: 10.3390/app10196952
    Basdurak N B, Valle-Levinson A. 2012. Influence of advective accelerations on estuarine exchange at a Chesapeake Bay tributary. Journal of Physical Oceanography, 42(10): 1617–1634. doi: 10.1175/JPO-D-11-0134.1
    Callies U, Groll N, Horstmann J, et al. 2017. Surface drifters in the German Bight: Model validation considering windage and Stokes drift. Ocean Science, 13(5): 799–827. doi: 10.5194/os-13-799-2017
    Cao Xinzhong, Tang Longmei, Zhang Yuexiu. 1995. Analyses of the hydrography features and the ability for containing contaminator for Port Xiangshan. Donghai Marine Science, 13(1): 10–19
    Charria G, Lazure P, Le Cann B, et al. 2013. Surface layer circulation derived from Lagrangian drifters in the Bay of Biscay. Journal of Marine Systems, 109–110 Suppl: S60–S76,
    Chen Yang, Cui Yanxing, Sheng Xiaoxuan, et al. 2020. Analytical solution to the 3D tide-induced Lagrangian residual current in a narrow bay with vertically varying eddy viscosity coefficient. Ocean Dynamics, 70(6): 759–770. doi: 10.1007/s10236-020-01359-3
    Chen Yang, Jiang Wensheng, Chen Xu, et al. 2017. Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique. Ocean Dynamics, 67(12): 1567–1576. doi: 10.1007/s10236-017-1108-6
    Chen Minglong, Jin Meng, Tao Peiran, et al. 2018. Assessment of microplastics derived from mariculture in Xiangshan Bay, China. Environmental Pollution, 242: 1146–1156. doi: 10.1016/j.envpol.2018.07.133
    Chen Minmo, Zhu Zenan, Zhang Chuanzheng, et al. 2021. Mapping of tidal current and associated nonlinear currents in the Xiangshan Bay by coastal acoustic tomography. Ocean Dynamics, 71(8): 811–821. doi: 10.1007/s10236-021-01470-z
    Cheng Peng. 2020. On residual velocities in sigma coordinates in narrow tidal channels. Acta Oceanologica Sinica, 39(5): 1–10. doi: 10.1007/s13131-020-1579-z
    Clarke A J, Van Gorder S. 2018. The relationship of near-surface flow, stokes drift and the wind stress. Journal of Geophysical Research: Oceans, 123(7): 4680–4692. doi: 10.1029/2018JC014102
    Correia C, Torres A F, Rosa A, et al. 2020. Export of dissolved and suspended matter from the main estuaries in South Portugal during winter conditions. Marine Chemistry, 224: 103827. doi: 10.1016/j.marchem.2020.103827
    Cui Yanxing, Jiang Wensheng, Deng Fangjing. 2019. 3D numerical computation of the tidally induced Lagrangian residual current in an idealized bay. Ocean Dynamics, 69(3): 283–300. doi: 10.1007/s10236-018-01243-1
    Delhez E J M. 1996. On the residual advection of passive constituents. Journal of Marine Systems, 8(3/4): 147–169. doi: 10.1016/0924-7963(96)00004-8
    Deng Fangjing, Jiang Wensheng, Feng Shizuo. 2017. The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity in a narrow model bay. Ocean Dynamics, 67(9): 1105–1118. doi: 10.1007/s10236-017-1076-x
    Dong Lixian, Su Jilan. 2000. Salinity distribution and mixing in Xiangshangang Bay: I. Salinity distribution and circulation pattern. Oceanologia et Limnologia Sinica, 31(2): 151–158
    Fei Yuejun, Liu Lian. 2018. Applied Research on Rotal Amount Control and Emission Reduction Assessment of Pollutants in Xiangshan Bay. Beijing: China Ocean Press, 64–65
    Feng Shizuo. 1987. A three-dimensional weakly nonlinear model of tide-induced Lagrangian residual current and mass transport, with an application to the Bohai Sea. In: Nihoul J C J, Jamart B M, eds. Three Dimensional models of Marine and Estuarine Dynamics. Elsevier Oceanography Series. v45. Amsterdam, the Netherlands: Elsewier, 471–488,
    Feng Shizuo, Ju Lian, Jiang Wensheng. 2008. A Lagrangian mean theory on coastal sea circulation with inter-tidal transports: I. Fundamentals. Acta Oceanologica Sinica, 27(6): 1–16
    Gao Shu, Xie Qinchun, Feng Yingjun. 1990. Fine-grained sediment transport and sorting by tidal exchange in Xiangshan Bay, Zhejiang, China. Estuarine, Coastal and Shelf Science, 31(4): 397–409,
    Geyer W R, Trowbridge J H, Bowen M M. 2000. The dynamics of a partially mixed estuary. Journal of Physical Oceanography, 30(8): 2035–2048. doi: 10.1175/1520-0485(2000)030<2035:TDOAPM>2.0.CO;2
    Haid V, Stanev E V, Pein J, et al. 2020. Secondary circulation in shallow ocean straits: observations and numerical modeling of the Danish Straits. Ocean Modelling, 148: 101585. doi: 10.1016/j.ocemod.2020.101585
    Han Songlin, Liang Shuxiu, Sun Zhaochen. 2014. Numerical simulation of tides, tidal currents and temperature-salinity structures in Xiangshan Bay based on FVCOM. Journal of Waterway and Harbor, 35(5): 481–488
    Hansen D V, Rattray M. 1965. Gravitational circulation in straits and estuaries. Journal of Marine Research, 23(2): 104–122
    Hill A E, Brown J, Fernand L, et al. 2008. Thermohaline circulation of shallow tidal seas. Geophysical Research Letters, 35(11): L11605. doi: 10.1029/2008GL033459
    Huijts K M H, Schuttelaars H M, de Swart H E, et al. 2009. Analytical study of the transverse distribution of along-channel and transverse residual flows in tidal estuaries. Continental Shelf Research, 29(1): 89–100. doi: 10.1016/j.csr.2007.09.007
    Jiang Wensheng, Feng Shizuo. 2011. Analytical solution for the tidally induced Lagrangian residual current in a narrow bay. Ocean Dynamics, 61(4): 543–558. doi: 10.1007/s10236-011-0381-z
    Jiang Wensheng, Feng Shizuo. 2014. 3D analytical solution to the tidally induced Lagrangian residual current equations in a narrow bay. Ocean Dynamics, 64(8): 1073–1091. doi: 10.1007/s10236-014-0738-1
    Jiang Wensheng, Sun Wenxin. 2002. Three dimensional tide-induced circulation model on a triangular mesh. International Journal for Numerical Methods in Fluids, 38(6): 555–566. doi: 10.1002/fld.231
    Ju Lian, Jiang Wensheng, Feng Shizuo. 2009. A Lagrangian mean theory on coastal sea circulation with inter-tidal transports: II. Numerical experiments. Acta Oceanologica Sinica, 28(1): 1–14
    Lavelle J W, Cokelet E D, Cannon G A. 1991. A model study of density intrusions into and circulation within a deep, silled estuary: Puget Sound. Journal of Geophysical Research: Oceans, 96(C9): 16779–16800. doi: 10.1029/91JC01450
    Liang Shuxiu, Han Songlin, Sun Zhaochen, et al. 2014. Lagrangian methods for water transport processes in a long-narrow bay—Xiangshan Bay, China. Journal of Hydrodynamics, 26(4): 558–567. doi: 10.1016/S1001-6058(14)60063-9
    Liu Qiang, Xu Xiaoqun, Zeng Jiangning, et al. 2019. Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Marine Pollution Bulletin, 141: 215–226. doi: 10.1016/j.marpolbul.2019.02.058
    Lu Youyu, Lueck R G. 1999. Using a broadband ADCP in a tidal channel. Part I: Mean flow and shear. Journal of Atmospheric and Oceanic Technology, 16(11): 1556–1567. doi: 10.1175/1520-0426(1999)016<1556:UABAIA>2.0.CO;2
    Mao Xinyan, Zhao Liang, Xu Peng, et al. 2013. Coastal GPS-GPRS drifting path observation system and its application. Periodical of Ocean University of China, 43(9): 12–16
    Muller H, Blanke B, Dumas F, et al. 2010. Identification of typical scenarios for the surface Lagrangian residual circulation in the Iroise Sea. Journal of Geophysical Research: Oceans, 115(C7): C07008. doi: 10.1029/2009JC005834
    Rodríguez P A, Carbajal N, Rodríguez J H G. 2017. Lagrangian trajectories, residual currents and rectification process in the Northern Gulf of California. Estuarine, Coastal and Shelf Science, 194: 263–275,
    Röhrs J, Christensen K H, Hole L R, et al. 2012. Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dynamics, 62(10–12): 1519–1533. doi: 10.1007/s10236-012-0576-y
    Schulz K, Umlauf L. 2016. Residual transport of suspended material by tidal straining near sloping topography. Journal of Physical Oceanography, 46(7): 2083–2102. doi: 10.1175/JPO-D-15-0218.1
    Sharples J, Simpson J H, Brubaker J M. 1994. Observations and modelling of periodic stratification in the upper York River Estuary, Virginia. Estuarine, Coastal and Shelf Science, 38(3): 301–312,
    Simpson J H, Williams E, Brasseur L H, et al. 2005. The impact of tidal straining on the cycle of turbulence in a partially stratified estuary. Continental Shelf Research, 25(1): 51–64. doi: 10.1016/j.csr.2004.08.003
    Stacey M T, Brennan M L, Burau J R, et al. 2010. The tidally averaged momentum balance in a partially and periodically stratified estuary. Journal of Physical Oceanography, 40(11): 2418–2434. doi: 10.1175/2010JPO4389.1
    Stacey M T, Monismith S G, Burau J R. 1999. Measurements of Reynolds stress profiles in unstratified tidal flow. Journal of Geophysical Research: Oceans, 104(C5): 10933–10949. doi: 10.1029/1998JC900095
    Stashchuk N, Vlasenko V, Hosegood P, et al. 2017. Tidally induced residual current over the Malin Sea continental slope. Continental Shelf Research, 139: 21–34. doi: 10.1016/j.csr.2017.03.010
    Sun Weiping, Yu Jianjun, Xu Xiaoqun, et al. 2014. Distribution and sources of heavy metals in the sediment of Xiangshan Bay. Acta Oceanologica Sinica, 33(4): 101–107. doi: 10.1007/s13131-014-0456-z
    Tamtare T, Dumont D, Chavanne C. 2021. The stokes drift in ocean surface drift prediction. Journal of Operational Oceanography, 1–13. doi: 10.1080/1755876X.2021.1872229
    Tarya A, Hoitink A J F, Van der Vegt M. 2010. Tidal and subtidal flow patterns on a tropical continental shelf semi-insulated by coral reefs. Journal of Geophysical Research: Oceans, 115(C9): C09029. doi: 10.1029/2010JC006168
    van Gent P L, Michaelis D, van Oudheusden B W, et al. 2017. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking. Experiments in Fluids, 58(4): 33. doi: 10.1007/s00348-017-2324-z
    Wan Meng, Yao Yanming, Chen Qin, et al. 2015. Numerical simulation study on the residual currents in the Xiangshan Bay. Marine Science Bulletin, 34(3): 295–302
    Wei Hao, Hainbucher D, Pohlmann T, et al. 2004. Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai Sea. Journal of Marine Systems, 44(3/4): 141–151. doi: 10.1016/j.jmarsys.2003.09.007
    Winant C D, de Velasco G G. 2003. Tidal dynamics and residual circulation in a well-mixed inverse estuary. Journal of Physical Oceanography, 33(7): 1365–1379. doi: 10.1175/1520-0485(2003)033<1365:TDARCI>2.0.CO;2
    Xu Peng, Mao Xinyan, Jiang Wensheng. 2016. Mapping tidal residual circulations in the outer Xiangshan Bay using a numerical model. Journal of Marine Systems, 154: 181–191. doi: 10.1016/j.jmarsys.2015.10.002
    Xu Peng, Mao Xinyan, Jiang Wensheng. 2017. Estimation of the bottom stress and bottom drag coefficient in a highly asymmetric tidal bay using three independent methods. Continental Shelf Research, 140: 37–46. doi: 10.1016/j.csr.2017.04.004
    Zhao Binfeng, Wang Ximing, Jin Hangbiao, et al. 2018. Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011–2016). Chemosphere, 212: 1163–1171. doi: 10.1016/j.chemosphere.2018.09.020
    Zhu Junzheng. 2009. Numerical simulation of characteristic of 3-D tidal flow in Xiangshan Bay. Journal of Hydroelectric Engineering, 28(3): 145–151
    Zimmerman J T F. 1979. On the Euler-Lagrange transformation and the Stokes’ drift in the presence of oscillatory and residual currents. Deep-Sea Research Part A: Oceanographic Research Papers, 26(5): 505–520. doi: 10.1016/0198-0149(79)90093-1
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (238) PDF downloads(21) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint