Volume 41 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Tianshi Du, Peiran Yang, Zhao Jing. On the variability of vertical eddy heat flux in the upper ocean[J]. Acta Oceanologica Sinica, 2022, 41(10): 94-99. doi: 10.1007/s13131-022-2009-1
Citation: Tianshi Du, Peiran Yang, Zhao Jing. On the variability of vertical eddy heat flux in the upper ocean[J]. Acta Oceanologica Sinica, 2022, 41(10): 94-99. doi: 10.1007/s13131-022-2009-1

On the variability of vertical eddy heat flux in the upper ocean

doi: 10.1007/s13131-022-2009-1
Funds:  The Taishan Scholar Fund under contract No. tsqn201909052.
More Information
  • Corresponding author: E-mail: pryang@qnlm.ac
  • Received Date: 2021-11-16
  • Accepted Date: 2022-02-05
  • Available Online: 2022-06-29
  • Publish Date: 2022-10-27
  • Ocean eddies produce strong vertical heat flux (VHF) in the upper ocean, exerting profound influences on the climate and ecosystem. Currently, mooring array provides a standard way to estimate the eddy-induced VHF (EVHF) based on the adiabatic potential density equation. Apart from the validity of adiabatic assumption, it remains unclear to what extent the estimated EVHF at a single location within a limited time period is representative of its climatological mean value. In this study, we analyzed the above issue by systematically evaluating the variability of EVHF simulated by a 1-km ocean model configured over the Kuroshio Extension. It is found that the EVHF at a single location exhibits pronounced variability. Even averaged over one year that is comparable to the current maintenance capacity of mooring array, the EVHF still deviates significantly from its climatological mean value. For more than 49% of locations in our computational domain (31°–40°N, 149°–166°E), the discrepancy between the one-year mean EVHF and its climatological mean value at the peaking depth is larger than the climatological mean itself. The mesoscale eddies play a dominant role in the variability of EVHF but contribute little to the climatological mean EVHF; the opposite is true for submesoscale eddies. Our findings indicate that nested mooring array allowing for isolating the effects of submesoscale eddies will be useful to obtain climatological mean EVHF.
  • loading
  • Callies J, Barkan R, Garabato A N. 2020. Time scales of submesoscale flow inferred from a mooring array. Journal of Physical Oceanography, 50(4): 1065–1086. doi: 10.1175/JPO-D-19-0254.1
    Cao Haijin, Fox-Kemper B, Jing Zhiyou. 2021. Submesoscale eddies in the upper ocean of the Kuroshio Extension from high-resolution simulation: energy budget. Journal of Physical Oceanography, 51(7): 2181–2201
    Cao Haijin, Jing Zhiyou, Fox-Kemper B, et al. 2019. Scale transition from geostrophic motions to internal waves in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(12): 9364–9383. doi: 10.1029/2019JC015575
    Capet X, McWilliams J C, Molemaker M J, et al. 2008. Mesoscale to submesoscale transition in the California Current system: Part II. frontal processes. Journal of Physical Oceanography, 38(1): 44–64. doi: 10.1175/2007JPO3672.1
    Carton J A, Chepurin G A, Chen Ligang. 2018. SODA3: A new ocean climate reanalysis. Journal of Climate, 31(17): 6967–6983. doi: 10.1175/JCLI-D-18-0149.1
    Gaube P, Chelton D B, Samelson R M, et al. 2015. Satellite observations of mesoscale eddy-induced Ekman Pumping. Journal of Physical Oceanography, 45(1): 104–132. doi: 10.1175/JPO-D-14-0032.1
    Griffies S M, Hallberg R W. 2000. Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Monthly Weather Review, 128(8): 2935–2946. doi: 10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2
    Griffies S M, Winton M, Anderson W G, et al. 2015. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. Journal of Climate, 28(3): 952–977. doi: 10.1175/JCLI-D-14-00353.1
    Gula J, Molemaker M J, McWilliams J C. 2014. Submesoscale cold filaments in the Gulf Stream. Journal of Physical Oceanography, 44(10): 2617–2643. doi: 10.1175/JPO-D-14-0029.1
    Haidvogel D B, Arango H G, Hedstrom K, et al. 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynamics of Atmospheres and Oceans, 32(3–4): 239–281. doi: 10.1016/S0377-0265(00)00049-X
    Jing Zhao, Wang Shengpeng, Wu Lixin, et al. 2020. Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Science Advances, 6(31): eaba7880. doi: 10.1126/sciadv.aba7880
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403. doi: 10.1029/94RG01872
    Large W G, Yeager S. 2004. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux (No. NCAR/TN-460+STR). University Corporation for Atmospheric Research,
    Qiu Bo, Chen Shuiming, Klein P, et al. 2020. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion. Journal of Physical Oceanography, 50(1): 55–79. doi: 10.1175/JPO-D-19-0172.1
    Rohr T, Harrison C, Long M C, et al. 2020. Eddy-modified iron, light, and phytoplankton cell division rates in the simulated Southern Ocean. Global Biogeochemical Cycles, 34(6): e2019GB006380
    Rudnick D L. 2001. On the skewness of vorticity in the upper ocean. Geophysical Research Letters, 28(10): 2045–2048. doi: 10.1029/2000GL012265
    Saha S, Moorthi S, Pan H L, et al. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8): 1015–1058. doi: 10.1175/2010BAMS3001.1
    Sasaki H, Klein P, Qiu Bo, et al. 2014. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nature Communications, 5: 5636. doi: 10.1038/ncomms6636
    Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
    Shcherbina A Y, D’Asaro E A, Lee C M, et al. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophysical Research Letters, 40(17): 4706–4711. doi: 10.1002/grl.50919
    Su Zhan, Wang Jinbo, Klein P, et al. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9: 775. doi: 10.1038/s41467-018-02983-w
    Waterman S, Jayne S R. 2011. Eddy-mean flow interactions in the along-stream development of a Western Boundary Current Jet: an idealized model study. Journal of Physical Oceanography, 41(4): 682–707. doi: 10.1175/2010JPO4477.1
    Yang Peiran, Jing Zhao, Sun Bingrong, et al. 2021. On the upper-ocean vertical eddy heat transport in the Kuroshio Extension: Part I. variability and dynamics. Journal of Physical Oceanography, 51(1): 229–246. doi: 10.1175/JPO-D-20-0068.1
    Yu Xiaolong, Garabato A C N, Martin A P, et al. 2019. An annual cycle of submesoscale vertical flow and restratification in the upper ocean. Journal of Physical Oceanography, 49(6): 1439–1461. doi: 10.1175/JPO-D-18-0253.1
    Zhang Zhiwei, Zhang Xincheng, Qiu Bo, et al. 2021. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays. Journal of Physical Oceanography, 51(1): 187–206. doi: 10.1175/JPO-D-20-0100.1
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (180) PDF downloads(12) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint