Volume 41 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Weiqi Hong, Lei Zhou, Xiaohui Xie, Han Zhang, Changrong Liang. Modified parameterization for near-inertial waves[J]. Acta Oceanologica Sinica, 2022, 41(10): 41-53. doi: 10.1007/s13131-022-2012-6
Citation: Weiqi Hong, Lei Zhou, Xiaohui Xie, Han Zhang, Changrong Liang. Modified parameterization for near-inertial waves[J]. Acta Oceanologica Sinica, 2022, 41(10): 41-53. doi: 10.1007/s13131-022-2012-6

Modified parameterization for near-inertial waves

doi: 10.1007/s13131-022-2012-6
Funds:  The National Natural Science Foundation of China under contract Nos 42125601 and 42076001; the Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources, under contract Nos HYGG2003 and QNYC2002; the project supported by the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. SML2021SP207; the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No. SL2020MS032; the CEES Visiting Fellowship Program under contract No. CEESRS202001; the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. 311021001.
More Information
  • Corresponding author: E-mail: zhoulei1588@sjtu.edu.cn
  • Received Date: 2022-01-24
  • Accepted Date: 2022-01-27
  • Available Online: 2022-07-04
  • Publish Date: 2022-10-27
  • The near-inertial waves (NIWs) are important for energy cascade in the ocean. They are usually significantly reinforced by strong winds, such as typhoon. Due to relatively coarse resolutions in contemporary climate models, NIWs and associated ocean mixing need to be parameterized. In this study, a parameterization for NIWs proposed by Jochum in 2013 (J13 scheme), which has been widely used, is compared with the observations in the South China Sea, and the observations are treated as model outputs. Under normal conditions, the J13 scheme performs well. However, there are noticeable discrepancies between the J13 scheme and observations during typhoon. During Typhoon Kalmaegi in 2014, the inferred value of the boundary layer is deeper in the J13 scheme due to the weak near-inertial velocity shear in the vertical. After typhoon, the spreading of NIWs beneath the upper boundary layer is much faster than the theoretical prediction of inertial gravity waves, and this fast process is not rendered well by the J13 scheme. In addition, below the boundary layer, NIWs and associated diapycnal mixing last longer than the direct impacts of typhoon on the sea surface. Since the energy dissipation and diapycnal mixing below the boundary layer are bounded to the surface winds in the J13 scheme, the prolonged influences of typhoon via NIWs in the ocean interior are missing in this scheme. Based on current examination, modifications to the J13 scheme are proposed, and the modified version can reduce the discrepancies in the temporal and vertical structures of diapycnal mixing.
  • loading
  • Alford M H. 2020. Revisiting near-inertial wind work: slab models, relative stress, and mixed layer deepening. Journal of Physical Oceanography, 50(11): 3141–3156. doi: 10.1175/JPO-D-20-0105.1
    Alford M H, Cronin M F, Klymak J M. 2012. Annual cycle and depth penetration of wind-generated near-inertial internal waves at ocean station papa in the Northeast Pacific. Journal of Physical Oceanography, 42(6): 889–909. doi: 10.1175/JPO-D-11-092.1
    Alford M H, Gregg M C. 2001. Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. Journal of Geophysical Research: Oceans, 106(C8): 16947–16968. doi: 10.1029/2000JC000370
    Alford M H, MacKinnon J A, Simmons H L, et al. 2016. Near-inertial internal gravity waves in the ocean. Annual Review of Marine Science, 8: 95–123. doi: 10.1146/annurev-marine-010814-015746
    Alford M H, Whitmont M. 2007. Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. Journal of Physical Oceanography, 37(8): 2022–2037. doi: 10.1175/JPO3106.1
    Chen Gengxin, Xue Huijie, Wang Dongxiao, et al. 2013. Observed near-inertial kinetic energy in the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118(10): 4965–4977. doi: 10.1002/jgrc.20371
    D’Asaro E A. 1985. The energy flux from the wind to near-inertial motions in the surface mixed layer. Journal of Physical Oceanography, 15(8): 1043–1059. doi: 10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2
    D’Asaro E A. 1995. A collection of papers on the ocean storms experiment. Journal of Physical Oceanography, 25(11): 2817–2818. doi: 10.1175/1520-0485(1995)025<2817:ACOPOT>2.0.CO;2
    D’Asaro E A, Black P G, Centurioni L R, et al. 2014. Impact of typhoons on the ocean in the Pacific. Bulletin of the American Meteorological Society, 95(9): 1405–1418. doi: 10.1175/BAMS-D-12-00104.1
    D’Asaro E A, Eriksen C C, Levine M D, et al. 1995. Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. Journal of Physical Oceanography, 25(11): 2909–2936. doi: 10.1175/1520-0485(1995)025<2909:UOICFB>2.0.CO;2
    Fedorov A V, Brierley C M, Emanuel K. 2010. Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463(7284): 1066–1070. doi: 10.1038/nature08831
    Fleagle R G, Businger J A. 1980. An Introduction to Atmospheric Physics. New York, NY, USA: Academic Press
    Fu L L. 1981. Observations and models of inertial waves in the deep ocean. Reviews of Geophysics, 19(1): 141–170. doi: 10.1029/RG019i001p00141
    Furuichi N, Hibiya T, Niwa Y. 2008. Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. Journal of Geophysical Research: Oceans, 113: C09034
    Hebert D, Moum J N. 1994. Decay of a near-inertial wave. Journal of Physical Oceanography, 24(11): 2334–2351. doi: 10.1175/1520-0485(1994)024<2334:DOANIW>2.0.CO;2
    Jaimes B, Shay L K. 2010. Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. Journal of Physical Oceanography, 40(6): 1320–1337. doi: 10.1175/2010JPO4309.1
    Jochum M, Briegleb B P, Danabasoglu G, et al. 2013. The impact of oceanic near-inertial waves on climate. Journal of Climate, 26(9): 2833–2844. doi: 10.1175/JCLI-D-12-00181.1
    Knutson T R, McBride J L, Chan J, et al. 2010. Tropical cyclones and climate change. Nature Geoscience, 3(3): 157–163. doi: 10.1038/ngeo779
    Kunze E, Briscoe M G, Williams A J III. 1990. Interpreting shear and strain fine structure from a neutrally buoyant float. Journal of Geophysical Research: Oceans, 95(C10): 18111–18125. doi: 10.1029/JC095iC10p18111
    Kunze E, Sanford T B. 1984. Observations of near-inertial waves in a front. Journal of Physical Oceanography, 14(3): 566–581. doi: 10.1175/1520-0485(1984)014<0566:OONIWI>2.0.CO;2
    Large W G, Grawford G B. 1995. Observations and simulations of upper-ocean response to wind events during the Ocean Storms Experiment. Journal of Physical Oceanography, 25(11): 2831–2852. doi: 10.1175/1520-0485(1995)025<2831:OASOUO>2.0.CO;2
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403. doi: 10.1029/94RG01872
    Levine M D, Zervakis V. 1995. Near-inertial wave propagation into the pycnocline during ocean storms: observations and model comparison. Journal of Physical Oceanography, 25(11): 2890–2908. doi: 10.1175/1520-0485(1995)025<2890:NIWPIT>2.0.CO;2
    Li Xinming, Qian Qingying. 1989. The wind stress field over the South China Sea. Journal of Ocean University of Qingdao, 19(3): 10–18
    MacKinnon J A, Zhao Zhongxiang, Whalen C B, et al. 2017. Climate process team on internal wave-driven ocean mixing. Bulletin of the American Meteorological Society, 98(11): 2429–2454. doi: 10.1175/BAMS-D-16-0030.1
    Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Research Part I: Oceanographic Research Papers, 45(12): 1977–2010. doi: 10.1016/S0967-0637(98)00070-3
    Olbers D, Eden C. 2013. A global model for the diapycnal diffusivity induced by internal gravity waves. Journal of Physical Oceanography, 43(8): 1759–1779. doi: 10.1175/JPO-D-12-0207.1
    Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10(1): 83–89. doi: 10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
    Park J J, Kim K, Schmitt R W. 2009. Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. Journal of Geophysical Research, 114(C11): C11010. doi: 10.1029/2008JC005216
    Pedlowsky J, Miles J W. 2004. Waves in the ocean and atmosphere: Introduction to wave dynamics. Applied Mechanics Reviews, 57(4): B20
    Price J F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2): 153–175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
    Qi Hongbo, De Szoeke R A, Paulson C A, et al. 1995. The structure of near-inertial waves during ocean storms. Journal of Physical Oceanography, 25(11): 2853–2871. doi: 10.1175/1520-0485(1995)025<2853:TSONIW>2.0.CO;2
    Sanford T B, Price J F, Girton J B. 2011. Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. Journal of Physical Oceanography, 41(6): 1041–1056. doi: 10.1175/2010JPO4313.1
    Silverthorne K E, Toole J M. 2009. Seasonal kinetic energy variability of near-inertial motions. Journal of Physical Oceanography, 39(4): 1035–1049. doi: 10.1175/2008JPO3920.1
    Simmons H L, Alford M H. 2012. Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25(2): 30–41. doi: 10.5670/oceanog.2012.39
    Sloyan B M, Rintoul S R. 2001. The southern ocean limb of the global deep overturning circulation. Journal of Physical Oceanography, 31(1): 143–173. doi: 10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2
    Ten Doeschate A, Sutherland G, Esters L, et al. 2017. ASIP: profiling the upper ocean. Oceanography, 30(2): 33–35. doi: 10.5670/oceanog.2017.216
    Troen I, Petersen E L. 1989. European Wind Atlas. Roskilde, Denmark: Risø National Laboratory
    van Haren H, Gostiaux L. 2012. Energy release through internal wave breaking. Oceanography, 25(2): 124–131. doi: 10.5670/oceanog.2012.47
    Wang Wei, Huang Rui Xin. 2004. Wind energy input to the Ekman layer. Journal of Physical Oceanography, 34(5): 1267–1275. doi: 10.1175/1520-0485(2004)034<1267:WEITTE>2.0.CO;2
    Watanabe M, Hibiya T. 2002. Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophysical Research Letters, 29(8): 64-1–64-3
    Webster F. 1968. Observations of inertial-period motions in the deep sea. Reviews of Geophysics, 6(4): 473–490. doi: 10.1029/RG006i004p00473
    Wolk F, Yamazaki H, Seuront L, et al. 2002. A new free-fall profiler for measuring biophysical microstructure. Journal of Atmospheric and Oceanic Technology, 19(5): 780–793. doi: 10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2
    Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36: 281–314. doi: 10.1146/annurev.fluid.36.050802.122121
    Ying Ming, Zhang Wei, Yu Hui, et al. 2014. An overview of the China meteorological administration tropical cyclone database. Journal of Atmospheric and Oceanic Technology, 31(2): 287–301. doi: 10.1175/JTECH-D-12-00119.1
    Zhai Xiaoming, Greatbatch R J, Eden C. 2007. Spreading of near-inertial energy in a 1/12° model of the North Atlantic Ocean. Geophysical Research Letters, 34(10): L10609. doi: 10.1029/2007GL029895
    Zhang Han, Chen Dake, Zhou Lei, et al. 2016. Upper ocean response to typhoon Kalmaegi (2014). Journal of Geophysical Research: Oceans, 121(8): 6520–6535. doi: 10.1002/2016JC012064
    Zhang Han, Wu Renhao, Chen Dake, et al. 2018. Net modulation of upper ocean thermal structure by Typhoon Kalmaegi (2014). Journal of Geophysical Research: Oceans, 123(10): 7154–7171. doi: 10.1029/2018JC014119
    Zhang Yu, Zhang Zhengguang, Chen Dake, et al. 2020. Strengthening of the Kuroshio current by intensifying tropical cyclones. Science, 368(6494): 988–993. doi: 10.1126/science.aax5758
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (175) PDF downloads(20) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint