Volume 41 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
Brian Wei Khong Chong, Sandric Chee Yew Leong, Victor S. Kuwahara, Teruaki Yoshida. Phytoplankton diversity in a tropical bay, North Borneo, Malaysia as revealed by light microscopy and Next-Generation Sequencing[J]. Acta Oceanologica Sinica, 2022, 41(12): 142-151. doi: 10.1007/s13131-022-2036-y
Citation: Brian Wei Khong Chong, Sandric Chee Yew Leong, Victor S. Kuwahara, Teruaki Yoshida. Phytoplankton diversity in a tropical bay, North Borneo, Malaysia as revealed by light microscopy and Next-Generation Sequencing[J]. Acta Oceanologica Sinica, 2022, 41(12): 142-151. doi: 10.1007/s13131-022-2036-y

Phytoplankton diversity in a tropical bay, North Borneo, Malaysia as revealed by light microscopy and Next-Generation Sequencing

doi: 10.1007/s13131-022-2036-y
Funds:  The Partial Funding from Sandric Leong through the National University of Singapore; the Fundamental Research Grant Scheme of the Ministry of Education, Malaysia under contract No. FRGS/1/2017/WAB09/UMS/02/1.
More Information
  • Corresponding author: E-mail: teruaki.yoshida@ums.edu.my
  • Received Date: 2021-07-16
  • Accepted Date: 2022-01-13
  • Available Online: 2022-08-30
  • Publish Date: 2022-12-30
  • Assessments of phytoplankton diversity in Sabah waters, North Borneo, have primarily relied on morphology-based identification, which has inherent biases and can be time-consuming. Next-Generation Sequencing (NGS) technology has been shown to be capable of overcoming several limitations of morphology-based methods. Samples were collected from the Sepanggar Bay over the course of the year 2018 in different monsoon seasons. Morphology-based identification and NGS sequencing of the V8–V9 region of the 18S LSU rDNA were used to investigate the diversity of the phytoplankton community. Microscopy and NGS showed complementary results with more diatom taxa detected by microscopy whereas NGS detected smaller and rarer taxa. The harmful algal genera in the study site comprised of Skeletonema, Margalefidinium, Pyrodinium, Takayama, and Alexandrium as detected by NGS. This study showed that that an integrative approach of both morphological and molecular techniques could provide more comprehensive information about the phytoplankton community as the approach captured quantitative variability as well as the diversity of phytoplankton species.
  • loading
  • Ajani P A, Verma A, Kim J H, et al. 2021. Using qPCR and high-resolution sensor data to model a multi-species Pseudo-nitzschia (Bacillariophyceae) bloom in southeastern Australia. Harmful Algae, 108: 102095. doi: 10.1016/j.hal.2021.102095
    Anton A, Teoh P L, Mohd-Shaleh S R, et al. 2008. First occurrence of Cochlodinium blooms in Sabah, Malaysia. Harmful Algae, 7(3): 331–336. doi: 10.1016/j.hal.2007.12.013
    Band-Schmidt C J, Martínez-López A, Bustillos-Guzmán J J, et al. 2012. Morphology, biochemistry, and growth of raphidophyte strains from the Gulf of California. Hydrobiologia, 693(1): 81–97. doi: 10.1007/s10750-012-1088-y
    Bates S S, Hubbard K A, Lundholm N, et al. 2018. Pseudo-nitzschia, Nitzschia, and domoic acid: new research since 2011. Harmful Algae, 79: 3–43. doi: 10.1016/j.hal.2018.06.001
    Bazin P, Jouenne F, Friedl T, et al. 2014. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: combined morphological and molecular approaches. PLoS ONE, 9(4): e94110. doi: 10.1371/journal.pone.0094110
    Bergman B, Sandh G, Lin Senjie, et al. 2013. Trichodesmium– a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiology Reviews, 37(3): 286–302. doi: 10.1111/j.1574-6976.2012.00352.x
    Boenigk J, Pfandl K, Stadler P, et al. 2005. High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environmental Microbiology, 7(5): 685–697. doi: 10.1111/j.1462-2920.2005.00743.x
    Bowers H A, Tengs T, Glasgow H B, et al. 2000. Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Applied and Environmental Microbiology, 66(11): 4641–4648. doi: 10.1128/AEM.66.11.4641-4648.2000
    Bradley I M, Pinto A J, Guest J S. 2016. Design and evaluation of illumina MiSeq-compatible, 18S rRNA gene-specific primers for improved characterization of mixed phototrophic communities. Applied and Environmental Microbiology, 82(19): 5878–5891. doi: 10.1128/AEM.01630-16
    Carpenter E J, Montoya J P, Burns J, et al. 1999. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Marine Ecology Progress Series, 185: 273–283. doi: 10.3354/meps185273
    Chen Zhenfan, Zhang Qingchun, Kong Fanzhou, et al. 2019. Resolving phytoplankton taxa based on high-throughput sequencing during brown tides in the Bohai Sea, China. Harmful Algae, 84: 127–138. doi: 10.1016/j.hal.2019.03.011
    Chong B W K, Leong S C Y, Kuwahara V S, et al. 2020. Monsoonal variation of the marine phytoplankton community in Kota Kinabalu, Sabah. Regional Studies in Marine Science, 37: 101326. doi: 10.1016/j.rsma.2020.101326
    Cupp E E. 1943. Marine plankton diatoms of the west coast of north America. Bulletin of the Scripps Institution of Oceanography, 5(1): 199–207
    de Salas M F, Bolch C J S, Botes L, et al. 2003. Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. Journal of Phycology, 39(6): 1233–1246. doi: 10.1111/j.0022-3646.2003.03-019.x
    de Salas M F, Rhodes L L, Mackenzie L A, et al. 2005. Gymnodinoid genera Karenia and Takayama (Dinophyceae) in New Zealand coastal waters. New Zealand Journal of Marine and Freshwater Research, 39(1): 135–139. doi: 10.1080/00288330.2005.9517296
    Edvardsen B, Eikrem W, Green J C, et al. 2000. Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia, 39(1): 19–35. doi: 10.2216/i0031-8884-39-1-19.1
    Elferink S, Neuhaus S, Wohlrab S, et al. 2017. Molecular diversity patterns among various phytoplankton size-fractions in west Greenland in late summer. Deep-Sea Research Part I: Oceanographic Research Papers, 121: 54–69. doi: 10.1016/j.dsr.2016.11.002
    Furuya K, Iwataki M, Lim P T, et al. 2018. Overview of harmful algal blooms in Asia. In: Glibert P M, Berdalet E, Burford M A, et al., eds. Global Ecology and Oceanography of Harmful Algal Blooms. Cham: Springer, 289–308
    Galluzzi L, Penna A, Bertozzini E, et al. 2004. Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a dinoflagellate). Applied and Environmental Microbiology, 70(2): 1199–1206. doi: 10.1128/AEM.70.2.1199-1206.2004
    Giribet G, Wheeler W. 2005. On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology, 121(4): 271–324. doi: 10.1111/j.1744-7410.2002.tb00132.x
    Gómez F, Richlen M L, Anderson D M. 2017. Molecular characterization and morphology of Cochlodinium strangulatum, the type species of Cochlodinium, and Margalefidinium gen. nov. for C. polykrikoides and allied species (Gymnodiniales, Dinophyceae). Harmful Algae, 63: 32–44. doi: 10.1016/j.hal.2017.01.008
    Gran-Stadniczeñko S, Egge E, Hostyeva V, et al. 2019. Protist diversity and seasonal dynamics in Skagerrak plankton communities as revealed by metabarcoding and microscopy. Journal of Eukaryotic Microbiology, 66(3): 494–513. doi: 10.1111/jeu.12700
    Hartley B. 1996. An Atlas of British Diatoms. Avon Dassett: Biopress
    Hii K S, Law I K, Sing L W L, et al. 2019. Wide distribution of toxic marine dinoflagellate Alexandrium tamiyavanichii along the east coast of Peninsular Malaysia. In: Akhir M F M, ed. National Scientific Cruise Expedition 2016–2017. Lahore: UMT Press, 101–113
    Hii K S, Mohd-Din M, Luo Zhaohe, et al. 2021. Diverse harmful microalgal community assemblages in the Johor Strait and the environmental effects on its community dynamics. Harmful Algae, 107: 102077. doi: 10.1016/j.hal.2021.102077
    Hong D D, Hien H T M, Thu N H, et al. 2008. Phylogenetic analyses of Prorocentrum spp. and Alexandrium spp. isolated from northern coast of Vietnam based on 18S rDNA sequence. Journal of Environmental Biology, 29(4): 535–542
    Hosoi-Tanabe S, Sako Y. 2005. Species-specific detection and quantification of toxic marine dinoflagellates Alexandrium tamarense and A. catenella by real-time PCR assay. Marine Biotechnology, 7(5): 506–514. doi: 10.1007/s10126-004-4128-4
    Iwataki M, Kawami H, Mizushima K, et al. 2008. Phylogenetic relationships in the harmful dinoflagellate Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae) inferred from LSU rDNA sequences. Harmful Algae, 7(3): 271–277. doi: 10.1016/j.hal.2007.12.003
    Jipanin S J, Shaleh S R M, Lim P T, et al. 2019. The monitoring of harmful algae blooms in Sabah, Malaysia. Journal of Physics: Conference Series, 1358(1): 012014. doi: 10.1088/1742-6596/1358/1/012014
    Kadar N A, Raehanah S, Shaleh M, et al. 2018. Molecular and phylogenetic identification of marine microalgae inferred by 18S rDNA gene. Malaysian Applied Biology, 47(6): 41–45
    Kon N F, Lau W L S, Hii K S, et al. 2017. Quantitative real-time PCR detection of a harmful unarmoured dinoflagellate, Karlodinium australe (Dinophyceae). Phycological Research, 65(4): 291–298. doi: 10.1111/pre.12186
    Kon N F, Teng S T, Hii K S, et al. 2015. Spatial distribution of toxic Alexandrium tamiyavanichii (Dinophyceae) in the southeastern South China Sea-Sulu Sea: a molecular-based assessment using real-time quantitative PCR (qPCR) assay. Harmful Algae, 50: 8–20. doi: 10.1016/j.hal.2015.10.002
    Leong S, Lim L P, Chew S M, et al. 2015. Three new records of dinoflagellates in Singapore’s coastal waters, with observations on environmental conditions associated with microalgal growth in the Johor Straits. The Raffles Bulletin of Zoology, S31: 24–36
    Lewandowska A M, Breithaupt P, Hillebrand H, et al. 2012. Responses of primary productivity to increased temperature and phytoplankton diversity. Journal of Sea Research, 72: 87–93. doi: 10.1016/j.seares.2011.10.003
    Lim H C, Leaw C P, Tan T H, et al. 2014. A bloom of Karlodinium australe (Gymnodiniales, Dinophyceae) associated with mass mortality of cage-cultured fishes in west Johor Strait, Malaysia. Harmful Algae, 40: 51–62. doi: 10.1016/j.hal.2014.10.005
    Lim Zhenfei, Luo Zhaohe, Lee L K, et al. 2019. Taxonomy and toxicity of Prorocentrum from Perhentian Islands (Malaysia), with a description of a non-toxigenic species Prorocentrum malayense sp. nov. (Dinophyceae). Harmful Algae, 83: 95–108. doi: 10.1016/j.hal.2019.01.007
    Lim P T, Usup G, Leaw C P. 2012. Harmful algal blooms in Malaysian waters. Sains Malaysiana, 41(12): 1509–1515
    Liow G R, Lau W L S, Law I K, et al. 2019. Phytoplankton community changes in Kuantan Port (Malaysia), with emphasis on the paralytic-shellfish toxin-producing dinoflagellate Alexandrium tamiyavanichii. Regional Studies in Marine Science, 26: 100504. doi: 10.1016/j.rsma.2019.100504
    Liu Hui, Probert I, Uitz J, et al. 2009. Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proceedings of the National Academy of Sciences of the United States of America, 106(31): 12803–12808. doi: 10.1073/pnas.0905841106
    Lohan K M P, Fleischer R C, Carney K J, et al. 2016. Amplicon-based pyrosequencing reveals high diversity of protistan parasites in ships’ ballast water: implications for biogeography and infectious diseases. Microbial Ecology, 71(3): 530–542. doi: 10.1007/s00248-015-0684-6
    López-García P, Rodríguez-Valera F, Pedrós-Alió C, et al. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 409(6820): 603–607. doi: 10.1038/35054537
    Lum W M, Benico G, Azanza R, et al. 2019. Morphology and molecular phylogeny of the harmful raphidophyte Chattonella subsalsa isolated from Bolinao, Philippines. Philippine Journal of Natural Sciences, 24: 50–56
    Lund J W, Hendey N I. 1965. An introductory account of the smaller algae of British coastal waters. Part V. Bacillariophyceae (Diatoms). Journal of Ecology, 53(2): 549
    Menden-Deuer S, Lessard E J, Satterberg J. 2001. Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Marine Ecology Progress Series, 222: 41–50. doi: 10.3354/meps222041
    Mohammad-Noor N, Weliyadi E, Aung T, et al. 2014. Effects of meteorological conditions on the occurence of Cochlodinium polykrikoides and Pyrodinium bahamense var. compressum in coastal waters of Kota Kinabalu, Sabah, Malaysia. Sains Malaysiana, 43(1): 21–29
    Montagnes D J S, Berges J A, Harrison P J, et al. 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography, 39(5): 1044–1060. doi: 10.4319/lo.1994.39.5.1044
    Omura T, Iwataki M, Borja V M, et al. 2012. Marine Phytoplankton of the Western Pacific. Tokyo: Kouseisha Kouseikaku
    Penna A, Casabianca S, Guerra A F, et al. 2017. Analysis of phytoplankton assemblage structure in the Mediterranean Sea based on high-throughput sequencing of partial 18S rRNA sequences. Marine Genomics, 36: 49–55. doi: 10.1016/j.margen.2017.06.001
    Potvin M, Lovejoy C. 2009. PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries. Journal of Eukaryotic Microbiology, 56(2): 174–181. doi: 10.1111/j.1550-7408.2008.00386.x
    Ptacnik R, Solimini A G, Andersen T, et al. 2008. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences of the United States of America, 105(13): 5134–5138. doi: 10.1073/pnas.0708328105
    Řezanka T, Nedbalová L, Barcytė D, et al. 2019. Arsenolipids in the green alga Coccomyxa (Trebouxiophyceae, Chlorophyta). Phytochemistry, 164: 243–251. doi: 10.1016/j.phytochem.2019.05.002
    Rodríguez F, Feist S W, Guillou L, et al. 2008. Phylogenetic and morphological characterisation of the green algae infesting blue mussel Mytilus edulis in the north and south Atlantic Oceans. Diseases of Aquatic Organisms, 81(3): 231–240
    Rognes T, Flouri T, Nichols B, et al. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4: e2584. doi: 10.7717/peerj.2584
    Roy R N. 1977. Red tide and outbreak of paralytic shellfish poisoning in Sabah. The Medical Journal of Malaysia, 31(3): 247–251
    Sakamoto S, Lim W A, Lu Douding, et al. 2021. Harmful algal blooms and associated fisheries damage in east Asia: current status and trends in China, Japan, Korea and Russia. Harmful Algae, 102: 101787. doi: 10.1016/j.hal.2020.101787
    Savin M C, Martin J L, LeGresley M, et al. 2004. Plankton diversity in the bay of fundy as measured by morphological and molecular methods. Microbial Ecology, 48(1): 51–65. doi: 10.1007/s00248-003-1033-8
    Sidik M J, Rashed-Un-Nabi M, Hoque A M. 2008. Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia. Estuarine, Coastal and Shelf Science, 80(2): 251–260
    Sildever S, Kawakami Y, Kanno N, et al. 2019. Toxic HAB species from the Sea of Okhotsk detected by a metagenetic approach, seasonality and environmental drivers. Harmful Algae, 87: 101631. doi: 10.1016/j.hal.2019.101631
    Šlapeta J, López-García P, Moreira D. 2006. Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Molecular Biology and Evolution, 23(1): 23–29. doi: 10.1093/molbev/msj001
    Steidinger K A, Landsberg J H, Truby E W, et al. 1998. First report of Gymnodinium pulchellum (Dinophyceae) in north America and associated fish kills in the Indian River, Florida. Journal of Phycology, 34(3): 431–437. doi: 10.1046/j.1529-8817.1998.340431.x
    Stoeck T, Bass D, Nebel M, et al. 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 19(S1): 21–31
    Stoeck T, Hayward B, Taylor G T, et al. 2006. A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist, 157(1): 31–43. doi: 10.1016/j.protis.2005.10.004
    Syasina I G, Kukhlevsky A D, Kovaleva A L, et al. 2012. Phylogenetic and morphological characterization of the green alga infesting the horse mussel Modiolus modiolus from Vityaz Bay (Peter the Great Bay, Sea of Japan). Journal of Invertebrate Pathology, 111(2): 175–181. doi: 10.1016/j.jip.2012.08.001
    Teng S T, Abdullah N, Hanifah A H, et al. 2021. Toxic bloom of Pseudo-nitzschia cuspidata (Bacillariophyceae) and domoic acid contamination of bivalve molluscs in Malaysia Borneo. Toxicon, 202: 132–141. doi: 10.1016/j.toxicon.2021.09.018
    Tillmann U, Gottschling M, Nézan E, et al. 2014. Morphological and molecular characterization of three new Azadinium species (Amphidomataceae, Dinophyceae) from the Irminger Sea. Protist, 165(4): 417–444. doi: 10.1016/j.protis.2014.04.004
    Tomas C R. 1997. Identifying Marine Phytoplankton. San Diego: Academic Press
    Tyrrell J V, Bergquist P R, Gray R D, et al. 1996. Phylogeny of the raphidophytes Heterosigma carterae and Chattonella antiqua using ‘V4’ domain SSU rDNA sequences. Biochemical Systematics and Ecology, 24(3): 221–235. doi: 10.1016/0305-1978(96)00025-7
    Vallina S M, Cermeno P, Dutkiewicz S, et al. 2017. Phytoplankton functional diversity increases ecosystem productivity and stability. Ecological Modelling, 361: 184–196. doi: 10.1016/j.ecolmodel.2017.06.020
    Verma A, Hoppenrath M, Dorantes-Aranda J J, et al. 2016. Molecular and phylogenetic characterization of Ostreopsis (Dinophyceae) and the description of a new species, Ostreopsis rhodesae sp. nov., from a subtropical Australian lagoon. Harmful Algae, 60: 116–130. doi: 10.1016/j.hal.2016.11.004
    Wilkerson F P, Grunseich G. 1990. Formation of blooms by the symbiotic ciliate Mesodinium rubrum: the significance of nitrogen uptake. Journal of Plankton Research, 12(5): 973–989. doi: 10.1093/plankt/12.5.973
    Xu Xin, Yu Zhiming, Cheng Fangjin, et al. 2017. Molecular diversity and ecological characteristics of the eukaryotic phytoplankton community in the coastal waters of the Bohai Sea, China. Harmful Algae, 61: 13–22. doi: 10.1016/j.hal.2016.11.005
    Yñiguez A T, Lim P T, Leaw C P, et al. 2021. Over 30 years of HABs in the Philippines and Malaysia: what have we learned?. Harmful Algae, 102: 101776
    Yoshida K, Endo H, Lawrenz E, et al. 2018. Community composition and photophysiology of phytoplankton assemblages in coastal Oyashio waters of the western north Pacific during early spring. Estuarine, Coastal and Shelf Science, 212: 80–94
    Yuan Jian, Li Meizhen, Lin Senjie. 2015. An improved DNA extraction method for efficient and quantitative recovery of phytoplankton diversity in natural assemblages. PLoS ONE, 10(7): e0133060. doi: 10.1371/journal.pone.0133060
    Zamor R M, Glenn K L, Hambright K D. 2012. Incorporating molecular tools into routine HAB monitoring programs: Using qPCR to track invasive Prymnesium. Harmful Algae, 15: 1–7. doi: 10.1016/j.hal.2011.10.028
    Zhu F, Massana R, Not F, et al. 2005. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiology Ecology, 52(1): 79–92. doi: 10.1016/j.femsec.2004.10.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (589) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return