Volume 42 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
Yangjun Chen, Jinxu Chen, Yi Wang, You Jiang, Minfang Zheng, Yusheng Qiu, Min Chen. Sources and transformations of nitrite in the Amundsen Sea in summer 2019 and 2020 as revealed by nitrogen and oxygen isotopes[J]. Acta Oceanologica Sinica, 2023, 42(4): 16-24. doi: 10.1007/s13131-022-2111-4
Citation: Yangjun Chen, Jinxu Chen, Yi Wang, You Jiang, Minfang Zheng, Yusheng Qiu, Min Chen. Sources and transformations of nitrite in the Amundsen Sea in summer 2019 and 2020 as revealed by nitrogen and oxygen isotopes[J]. Acta Oceanologica Sinica, 2023, 42(4): 16-24. doi: 10.1007/s13131-022-2111-4

Sources and transformations of nitrite in the Amundsen Sea in summer 2019 and 2020 as revealed by nitrogen and oxygen isotopes

doi: 10.1007/s13131-022-2111-4
Funds:  The Impact and Response of Antarctic Seas to Climate Change under contract Nos IRASCC 02-01-01 and IRASCC 01-01-02C; the National Natural Science Foundation of China under contract No. 41721005.
More Information
  • Corresponding author: E-mail: mchen@xmu.edu.cn
  • Received Date: 2022-06-29
  • Accepted Date: 2022-09-28
  • Available Online: 2023-02-02
  • Publish Date: 2023-04-25
  • In this study, the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean. We found that primary nitrite maxima (PNMs) are widely present in the Amundsen Sea, where the depth of occurrence deepens from east to west and nitrite concentrations increases. Evidence from dual isotopes suggests that the formation of PNMs in all regions of the Amundsen Sea is dominated by ammonia oxidation. More importantly, the nitrogen and oxygen isotope compositions of nitrite in the Amundsen Sea mixed layer are abnormal, and their depth profiles are mirror symmetrical. Isotopic anomalies exhibit spatial variations, with central surface water having the lowest nitrogen isotope composition (−89.9‰±0.2‰) and western surface water having the highest oxygen isotope composition (63.3‰±0.3‰). Isotopic exchange reaction between nitrate and nitrite is responsible for these isotope anomalies, as both nitrogen and oxygen isotopes have large isotopic fractionation and opposite enrichment effects. This proves that isotopic exchange reaction operates extensively in different regions of the Amundsen Sea. Our study highlights the unique role of dual isotopes of nitrite in deepening the understanding of nitrogen cycle. Further studies on ammonia oxidation and isotopic exchange between nitrate and nitrite are warranted in the future to understand their roles in the nitrogen cycle in the Southern Ocean.
  • loading
  • Altabet M A, Francois R. 2001. Nitrogen isotope biogeochemistry of the Antarctic Polar Frontal Zone at 170°W. Deep-Sea Research Part II: Topical Studies in Oceanography, 48(19–20): 4247–4273
    Bett D T, Holland P R, Garabato A C N, et al. 2020. The impact of the Amundsen Sea freshwater balance on ocean melting of the west Antarctic ice sheet. Journal of Geophysical Research: Oceans, 125(9): e2020JC016305
    Bindoff N L, Rosenberg M A, Warner M J. 2000. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep-Sea Research Part II: Topical Studies in Oceanography, 47(12–13): 2299–2326
    Bourbonnais A, Altabet M A, Charoenpong C N, et al. 2015. N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment. Global Biogeochemical Cycles, 29(6): 793–811. doi: 10.1002/2014GB005001
    Brandhorst W. 1959. Nitrification and denitrification in the eastern tropical North Pacific. ICES Journal of Marine Science, 25(1): 3–20. doi: 10.1093/icesjms/25.1.3
    Buchwald C, Casciotti K L. 2010. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnology and Oceanography, 55(3): 1064–1074. doi: 10.4319/lo.2010.55.3.1064
    Buchwald C, Casciotti K L. 2013. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nature Geoscience, 6(4): 308–313. doi: 10.1038/ngeo1745
    Buchwald C, Santoro A E, McIlvin M R, et al. 2012. Oxygen isotopic composition of nitrate and nitrite produced by nitrifying cocultures and natural marine assemblages. Limnology and Oceanography, 57(5): 1361–1375. doi: 10.4319/lo.2012.57.5.1361
    Buchwald C, Santoro A E, Stanley R H R, et al. 2015. Nitrogen cycling in the secondary nitrite maximum of the eastern tropical North Pacific off Costa Rica. Global Biogeochemical Cycles, 29(12): 2061–2081. doi: 10.1002/2015GB005187
    Casciotti K L. 2009. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochimica et Cosmochimica Acta, 73(7): 2061–2076. doi: 10.1016/j.gca.2008.12.022
    Casciotti K L. 2016a. Nitrite isotopes as tracers of marine N cycle processes. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 374(2081): 20150295
    Casciotti K L. 2016b. Nitrogen and oxygen isotopic studies of the marine nitrogen cycle. Annual Review of Marine Science, 8: 379–407. doi: 10.1146/annurev-marine-010213-135052
    Casciotti K L, Böhlke J K, McIlvin M R, et al. 2007. Oxygen isotopes in nitrite: analysis, calibration, and equilibration. Analytical Chemistry, 79(6): 2427–2436. doi: 10.1021/ac061598h
    Casciotti K L, Buchwald C, McIlvin M. 2013. Implications of nitrate and nitrite isotopic measurements for the mechanisms of nitrogen cycling in the Peru oxygen deficient zone. Deep-Sea Research Part I: Oceanographic Research Papers, 80: 78–93. doi: 10.1016/j.dsr.2013.05.017
    Casciotti K L, McIlvin M, Buchwald C. 2010. Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnology and Oceanography, 55(2): 753–762. doi: 10.4319/lo.2010.55.2.0753
    Casciotti K L, Sigman D M, Hastings M G, et al. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74(19): 4905–4912. doi: 10.1021/ac020113w
    Casciotti K L, Sigman D M, Ward B B. 2003. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiology Journal, 20(4): 335–353. doi: 10.1080/01490450303895
    Chalk T B, Hain M P, Foster G L, et al. 2017. Causes of ice age intensification across the mid-pleistocene transition. Proceedings of the National Academy of Sciences of the United States of America, 114(50): 13114–13119. doi: 10.1073/pnas.1702143114
    Checkley Jr D M, Miller C A. 1989. Nitrogen isotope fractionation by oceanic zooplankton. Deep-Sea Research Part A: Oceanographic Research Papers, 36(10): 1449–1456
    Chen Yangjun, Bardhan P, Zhao Xiufeng, et al. 2021. Nitrite cycle indicated by dual isotopes in the northern South China Sea. Journal of Geophysical Research: Biogeosciences, 126(7): e2020JG006129
    Chen Yangjun, Chen Min. 2022. Nitrite cycling in warming Arctic and subarctic waters. Geophysical Research Letters, 49(12): e2021-GL096947
    Chen Yangjun, Chen Min, Chen Jinxu, et al. 2022. Dual isotopes of nitrite in the Amundsen Sea in summer. Science of the Total Environment, 843: 157055. doi: 10.1016/j.scitotenv.2022.157055
    Codispoti L A, Friederich G E, Packard T T, et al. 1986. High nitrite levels off northern Peru: a signal of instability in the marine denitrification rate. Science, 233(4769): 1200–1202. doi: 10.1126/science.233.4769.1200
    DiFiore P J, Sigman D M, Dunbar R B. 2009. Upper ocean nitrogen fluxes in the Polar Antarctic Zone: constraints from the nitrogen and oxygen isotopes of nitrate. Geochemistry, Geophysics, Geosystems, 10(11): Q11016
    DiFiore P J, Sigman D M, Karsh K L, et al. 2010. Poleward decrease in the isotope effect of nitrate assimilation across the Southern Ocean. Geophysical Research Letters, 37(17): L17601
    DiFiore P J, Sigman D M, Trull T W, et al. 2006. Nitrogen isotope constraints on subantarctic biogeochemistry. Journal of Geophysical Research: Oceans, 111(C8): C08016
    Dore J E, Karl D M. 1996. Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at station ALOHA. Limnology and Oceanography, 41(8): 1619–1628. doi: 10.4319/lo.1996.41.8.1619
    Fripiat F, Elskens M, Trull T W, et al. 2015a. Significant mixed layer nitrification in a natural iron-fertilized bloom of the Southern Ocean. Global Biogeochemical Cycles, 29(11): 1929–1943. doi: 10.1002/2014GB005051
    Fripiat F, Martínez-García A, Fawcett S E, et al. 2019. The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications. Geochimica et Cosmochimica Acta, 247: 261–279. doi: 10.1016/j.gca.2018.12.003
    Fripiat F, Sigman D M, Fawcett S E, et al. 2014. New insights into sea ice nitrogen biogeochemical dynamics from the nitrogen isotopes. Global Biogeochemical Cycles, 28(2): 115–130. doi: 10.1002/2013GB004729
    Fripiat F, Sigman D M, Massé G, et al. 2015b. High turnover rates indicated by changes in the fixed N forms and their stable isotopes in Antarctic landfast sea ice. Journal of Geophysical Research: Oceans, 120(4): 3079–3097. doi: 10.1002/2014JC010583
    Froneman P W, Laubscher R K, Mcquaid C D. 2001. Size-fractionated primary production in the South Atlantic and Atlantic sectors of the Southern Ocean. Journal of Plankton Research, 23(6): 611–622. doi: 10.1093/plankt/23.6.611
    Granger J, Boshers D S, Böhlke J K, et al. 2020. The influence of sample matrix on the accuracy of nitrite N and O isotope ratio analyses with the azide method. Rapid Communications in Mass Spectrometry, 34(1): e8569
    Granger J, Sigman D M, Needoba J A, et al. 2004. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnology and Oceanography, 49(5): 1763–1773. doi: 10.4319/lo.2004.49.5.1763
    Hoch M P, Fogel M L, Kirchman D L. 1992. Isotope fractionation associated with ammonium uptake by a marine bacterium. Limnology and Oceanography, 37(7): 1447–1459. doi: 10.4319/lo.1992.37.7.1447
    Hu H, Bourbonnais A, Larkum J, et al. 2016. Nitrogen cycling in shallow low-oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen isotopes. Biogeosciences, 13(5): 1453–1468. doi: 10.5194/bg-13-1453-2016
    Hutchins D A, Capone D G. 2022. The marine nitrogen cycle: new developments and global change. Nature Reviews Microbiology, 20(7): 401–414. doi: 10.1038/s41579-022-00687-z
    Jaccard S L, Hayes C T, Martínez-García A, et al. 2013. Two modes of change in Southern Ocean productivity over the past million years. Science, 339(6126): 1419–1423. doi: 10.1126/science.1227545
    Jochem F J, Mathot S, Quéguiner B. 1995. Size-fractionated primary production in the open Southern Ocean in austral spring. Polar Biology, 15(6): 381–392
    Karsh K L, Granger J, Kritee K, et al. 2012. Eukaryotic assimilatory nitrate reductase fractionates N and O isotopes with a ratio near unity. Environmental Science & Technology, 46(11): 5727–5735
    Kemeny P C, Weigand M A, Zhang R, et al. 2016. Enzyme-level interconversion of nitrate and nitrite in the fall mixed layer of the Antarctic Ocean. Global Biogeochemical Cycles, 30(7): 1069–1085. doi: 10.1002/2015GB005350
    Kiefer D A, Olson R J, Holm-Hansen O. 1976. Another look at the nitrite and chlorophyll maxima in the central North Pacific. Deep-Sea Research and Oceanographic Abstracts, 23(12): 1199–1208. doi: 10.1016/0011-7471(76)90895-0
    Kobayashi K, Fukushima K, Onishi Y, et al. 2021. Influence of δ18O of water on measurements of δ18O of nitrite and nitrate. Rapid Communications in Mass Spectrometry, 35(2): e8979
    Kowalchuk G A, Stephen J R. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 55: 485–529. doi: 10.1146/annurev.micro.55.1.485
    Lehmann M F, Bernasconi S M, Barbieri A, et al. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 66(20): 3573–3584. doi: 10.1016/S0016-7037(02)00968-7
    Liu Sumei, Ning Xiaoyan, Dong Shuhang, et al. 2020. Source versus recycling influences on the isotopic composition of nitrate and nitrite in the East China Sea. Journal of Geophysical Research: Oceans, 125(8): e2020JC016061
    Lomas M W, Lipschultz F. 2006. Forming the primary nitrite maximum: nitrifiers or phytoplankton?. Limnology and Oceanography, 51(5): 2453–2467. doi: 10.4319/lo.2006.51.5.2453
    Lourey M J, Trull T W, Sigman D M. 2003. Sensitivity of δ15N of nitrate, surface suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the Southern Ocean. Global Biogeochemical Cycles, 17(3): 1081
    Mackey K R M, Bristow L, Parks D R, et al. 2011. The influence of light on nitrogen cycling and the primary nitrite maximum in a seasonally stratified sea. Progress in Oceanography, 91(4): 545–560. doi: 10.1016/j.pocean.2011.09.001
    Macko S A, Estep M L F, Engel M H, et al. 1986. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination. Geochimica et Cosmochimica Acta, 50(10): 2143–2146. doi: 10.1016/0016-7037(86)90068-2
    Martin J H, Gordon R M, Fitzwater S E. 1990. Iron in Antarctic waters. Nature, 345(6271): 156–158. doi: 10.1038/345156a0
    Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. 2011. Southern Ocean dust-climate coupling over the past four million years. Nature, 476(7360): 312–315. doi: 10.1038/nature10310
    McIlvin M R, Altabet M A. 2005. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Analytical Chemistry, 77(17): 5589–5595. doi: 10.1021/ac050528s
    Mdutyana M, Thomalla S J, Philibert R, et al. 2020. The seasonal cycle of nitrogen uptake and nitrification in the Atlantic sector of the Southern Ocean. Global Biogeochemical Cycles, 34(7): e2019GB006363
    Mitchell B G, Brody E A, Holm-Hansen O, et al. 1991. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnology and Oceanography, 36(8): 1662–1677. doi: 10.4319/lo.1991.36.8.1662
    Moore C M, Mills M M, Arrigo K R, et al. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 6(9): 701–710. doi: 10.1038/ngeo1765
    Naughten K A, Holland P R, Dutrieux P, et al. 2022. Simulated twentieth-century ocean warming in the Amundsen Sea, west Antarctica. Geophysical Research Letters, 49(5): e2021GL094566
    Newell S E, Babbin A R, Jayakumar A, et al. 2011. Ammonia oxidation rates and nitrification in the Arabian Sea. Global Biogeochemical Cycles, 25(4): GB4016
    Newell S E, Fawcett S E, Ward B B. 2013. Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the Sargasso Sea. Limnology and Oceanography, 58(4): 1491–1500. doi: 10.4319/lo.2013.58.4.1491
    Olson R J. 1981. 15N tracer studies of the primary nitrite maximum. Journal of Marine Research, 39(2): 203–226
    Peng Xuefeng, Fawcett S E, Van Oostende N, et al. 2018. Nitrogen uptake and nitrification in the subarctic North Atlantic Ocean. Limnology and Oceanography, 63(4): 1462–1487. doi: 10.1002/lno.10784
    Peng Xuefeng, Fuchsman C A, Jayakumar A, et al. 2015. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific. Global Biogeochemical Cycles, 29(12): 2034–2049. doi: 10.1002/2015GB005278
    Santoro A E, Sakamoto C M, Smith J M, et al. 2013. Measurements of nitrite production in and around the primary nitrite maximum in the central California Current. Biogeosciences, 10(11): 7395–7410. doi: 10.5194/bg-10-7395-2013
    Shepherd A, Ivins E, Rignot E, et al. 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558(7709): 219–222. doi: 10.1038/s41586-018-0179-y
    Sigman D M, Altabet M A, McCorkle D C, et al. 1999. The δ15N of nitrate in the Southern Ocean: consumption of nitrate in surface waters. Global Biogeochemical Cycles, 13(4): 1149–1166. doi: 10.1029/1999GB900038
    Smart S M, Fawcett S E, Thomalla S J, et al. 2015. Isotopic evidence for nitrification in the Antarctic winter mixed layer. Global Biogeochemical Cycles, 29(4): 427–445. doi: 10.1002/2014GB005013
    Smith J M, Chavez F P, Francis C A. 2014. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean. PLoS ONE, 9(9): e108173. doi: 10.1371/journal.pone.0108173
    Vo J, Inwood W, Hayes J M, et al. 2013. Mechanism for nitrogen isotope fractionation during ammonium assimilation by Escherichia coli K12. Proceedings of the National Academy of Sciences of the United States of America, 110(21): 8696–8701. doi: 10.1073/pnas.1216683110
    Ward B B. 2008. Nitrification in marine systems. In: Capone D G, Bronk D A, Mulholland M R, et al., eds. Nitrogen in the Marine Environment. 2nd ed. San Diego: Academic Press, 199–261
    Ward B B, Talbot M C, Perry M J. 1984. Contributions of phytoplankton and nitrifying bacteria to ammonium and nitrite dynamics in coastal waters. Continental Shelf Research, 3(4): 383–398. doi: 10.1016/0278-4343(84)90018-9
    Waser N A D, Harrison P J, Nielsen B, et al. 1998. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnology and Oceanography, 43(2): 215–224. doi: 10.4319/lo.1998.43.2.0215
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (490) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return