Volume 42 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Yu Yao, Baobao Zhou, Zhongwei Zhao, Xianjin Chen, Long Chen. An investigation of the morphodynamic change of reef islands under monochromatic waves[J]. Acta Oceanologica Sinica, 2023, 42(7): 41-50. doi: 10.1007/s13131-023-2156-z
Citation: Yu Yao, Baobao Zhou, Zhongwei Zhao, Xianjin Chen, Long Chen. An investigation of the morphodynamic change of reef islands under monochromatic waves[J]. Acta Oceanologica Sinica, 2023, 42(7): 41-50. doi: 10.1007/s13131-023-2156-z

An investigation of the morphodynamic change of reef islands under monochromatic waves

doi: 10.1007/s13131-023-2156-z
Funds:  The National Natural Science Foundation of China under contract Nos 51979013 and 51909013; the National Key Research and Development Program of China under contract Nos 2021YFC3100502 and 2021YFB2601105; the Hainan Provincial Natural Science Foundation of China under contract No. 421QN0978.
More Information
  • Corresponding author: E-mail: zhongwei.zhao@scsio.ac.cn
  • Received Date: 2022-08-19
  • Accepted Date: 2022-11-01
  • Available Online: 2023-07-21
  • Publish Date: 2023-07-25
  • The persistence and habitability of coral reef islands in future extreme oceanographic conditions has received increasing attention in the recent decade, concerning that the sea level rise (SLR) and more frequent and intense storms in the context of global climate change are expected to destabilize those islands. Here, we conduct a set of wave-flume laboratory experiments focusing on the morphodynamic change of reef islands to varying ocean forcing conditions (wave height and SLR). Subsequently, a phase-resolving XBeach numerical model is adopted to simulate the monochromatic wave process and its associated sediment dynamics. The adopted model is also firstly validated by laboratory experimental results as reported in this study. It is then used to examine the impacts of island morphological factors (island width, island height, island location and island side slope) on the island migration. The combined laboratory/physical and numerical experiment outputs suggest that reef islands can accrete vertically in response to the sea level rise and the increased storminess.
  • loading
  • Ahrens J P. 2000. A fall-velocity equation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(2): 99–102
    Berard N A, Mulligan R P, da Silva A M F, et al. 2017. Evaluation of XBeach performance for the erosion of a laboratory sand dune. Coastal Engineering, 125: 70–80. doi: 10.1016/j.coastaleng.2017.04.002
    Buckley M, Lowe R, Hansen J. 2014. Evaluation of nearshore wave models in steep reef environments. Ocean Dynamics, 64(6): 847–862. doi: 10.1007/s10236-014-0713-x
    Cheng N S. 1997. Simplified settling velocity formula for sediment particle. Journal of Hydraulic Engineering, 123(2): 149–152. doi: 10.1061/(ASCE)0733-9429(1997)123:2(149)
    Costa M B, Macedo E C, Siegle E. 2019. Wave refraction and reef island stability under rising sea level. Global and Planetary Change, 172: 256–267. doi: 10.1016/j.gloplacha.2018.10.015
    De Winter R C, Gongriep F, Ruessink B G. 2015. Observations and modeling of alongshore variability in dune erosion at Egmond aan Zee, the Netherlands. Coastal Engineering, 99: 167–175. doi: 10.1016/j.coastaleng.2015.02.005
    Deconto R M, Pollard D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature, 531(7596): 591–597. doi: 10.1038/nature17145
    Dickinson W R. 2009. Pacific atoll living: How long already and until when?. GSA Today, 19(3): 4–10. doi: 10.1130/GSATG35A.1
    Duvat V K E. 2019. A global assessment of atoll island planform changes over the past decades. WIREs Climate Change, 10(1): e557
    Elsayed S M, Oumeraci H. 2017. Effect of beach slope and grain-stabilization on coastal sediment transport: An attempt to overcome the erosion overestimation by XBeach. Coastal Engineering, 121: 179–196. doi: 10.1016/j.coastaleng.2016.12.009
    Etienne S, Terry J P. 2012. Coral boulders, gravel tongues and sand sheets: features of coastal accretion and sediment nourishment by Cyclone Tomas (March 2010) on Taveuni Island, Fiji. Geomorphology, 175–176: 54–65
    Franklin G, Mariño-Tapia I, Torres-Freyermuth A. 2013. Effects of reef roughness on wave setup and surf zone currents. Journal of Coastal Research, 65: 2005–2010
    Galappatti G, Vreugdenhil C B. 1985. A depth-integrated model for suspended sediment transport. Journal of Hydraulic Research, 23(4): 359–377. doi: 10.1080/00221688509499345
    Grady A E, Moore L J, Storlazzi C D, et al. 2013. The influence of sea level rise and changes in fringing reef morphology on gradients in alongshore sediment transport. Geophysical Research Letters, 40(12): 3096–3101. doi: 10.1002/grl.50577
    Hallermeier R J. 1981. Terminal settling velocity of commonly occurring sand grains. Sedimentology, 28(6): 859–865. doi: 10.1111/j.1365-3091.1981.tb01948.x
    Harter C, Figlus J. 2017. Numerical modeling of the morphodynamic response of a low-lying barrier island beach and foredune system inundated during Hurricane Ike using XBeach and CSHORE. Coastal Engineering, 120: 64–74. doi: 10.1016/j.coastaleng.2016.11.005
    Kayanne H, Aoki K, Suzuki T, et al. 2016. Eco-geomorphic processes that maintain a small coral reef island: Ballast Island in the Ryukyu Islands, Japan. Geomorphology, 271: 84–93. doi: 10.1016/j.geomorph.2016.07.021
    Kench P S, Brander R W, Parnell K E, et al. 2006. Wave energy gradients across a Maldivian atoll: Implications for island geomorphology. Geomorphology, 81(1–2): 1–17
    Kench P S, Ford M R, Owen S D. 2018. Patterns of island change and persistence offer alternate adaptation pathways for atoll nations. Nature Communications, 9(1): 605. doi: 10.1038/s41467-018-02954-1
    Kench P S, Thompson D, Ford M R, et al. 2015. Coral islands defy sea-level rise over the past century: records from a central Pacific atoll. Geology, 43(6): 515–518. doi: 10.1130/G36555.1
    Kopp R E, Horton R M, Little C M, et al. 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2(8): 383–406. doi: 10.1002/2014EF000239
    Li Jinxuan, Zang Jun, Liu Shuxue, et al. 2019. Numerical investigation of wave propagation and transformation over a submerged reef. Coastal Engineering Journal, 61(3): 363–379. doi: 10.1080/21664250.2019.1609712
    Lindemer C A, Plant N G, Puleo J A, et al. 2010. Numerical simulation of a low-lying barrier island’s morphological response to Hurricane Katrina. Coastal Engineering, 57(11–12): 985–995
    Liu Ye, Liao Zhiling, Fang Kezhao, et al. 2021. Uncertainty of wave runup prediction on coral reef-fringed coasts using SWASH model. Ocean Engineering, 242: 110094. doi: 10.1016/j.oceaneng.2021.110094
    Ma Gangfeng, Su Shih-Feng, Liu Shuguang, et al. 2014. Numerical simulation of infragravity waves in fringing reefs using a shock-capturing non-hydrostatic model. Ocean Engineering, 85: 54–64. doi: 10.1016/j.oceaneng.2014.04.030
    Masselink G, Beetham E, Kench P. 2020. Coral reef islands can accrete vertically in response to sea level rise. Science Advances, 6(24): eaay3656. doi: 10.1126/sciadv.aay3656
    Masselink G, McCall R, Beetham E, et al. 2021. Role of future reef growth on morphological response of coral reef islands to sea-level rise. Journal of Geophysical Research: Earth Surface, 126(2): e2020JF005749
    McCall R T, Masselink G, Poate T G, et al. 2015. Modelling the morphodynamics of gravel beaches during storms with XBeach-G. Coastal Engineering, 103: 52–66. doi: 10.1016/j.coastaleng.2015.06.002
    McLean R, Kench P. 2015. Destruction or persistence of coral atoll islands in the face of 20th and 21st century sea-level rise?. WIREs Climate Change, 6(5): 445–463. doi: 10.1002/wcc.350
    Nicholls R J, Cazenave A. 2010. Sea-level rise and its impact on coastal zones. Science, 328(5985): 1517–1520. doi: 10.1126/science.1185782
    Ning Yue, Liu Weijie, Zhao Xizeng, et al. 2019. Study of irregular wave run-up over fringing reefs based on a shock-capturing Boussinesq model. Applied Ocean Research, 84: 216–224. doi: 10.1016/j.apor.2019.01.013
    Nurse L A, McLean R F, Agard J, et al. 2014. Small islands. In: Barros V R, Field C B, Dokken D J, et al., eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY: Cambridge University Press, 1613–1654
    Pearson S G, Storlazzi C D, Van Dongeren A R, et al. 2017. A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts. Journal of Geophysical Research: Oceans, 122(12): 10099–10117. doi: 10.1002/2017JC013204
    Quataert E, Storlazzi C, Van Rooijen A, et al. 2015. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophysical Research Letters, 42(15): 6407–6415
    Quataert E, Storlazzi C, Van Dongeren A, et al. 2020. The importance of explicitly modelling sea-swell waves for runup on reef-lined coasts. Coastal Engineering, 160: 103704. doi: 10.1016/j.coastaleng.2020.103704
    Riazi A, Vila-Concejo A, Salles T, et al. 2020. Improved drag coefficient and settling velocity for carbonate sands. Scientific Reports, 10(1): 9465. doi: 10.1038/s41598-020-65741-3
    Sengupta M, Ford M R, Kench P S. 2021a. Shoreline changes in coral reef islands of the Federated States of Micronesia since the mid-20th century. Geomorphology, 377: 107584. doi: 10.1016/j.geomorph.2020.107584
    Sengupta M, Ford M R, Kench P S. 2021b. Multi-decadal planform changes on coral reef islands from atolls and mid-ocean reef platforms of the equatorial Pacific Ocean: Gilbert Islands, Republic of Kiribati. Geomorphology, 389: 107831. doi: 10.1016/j.geomorph.2021.107831
    Shi Jian, Zhang Chi, Zheng Jinhai, et al. 2018. Modelling wave breaking across coral reefs using a non-hydrostatic model. Journal of Coastal Research, 85: 501–505. doi: 10.2112/SI85-101.1
    Shope J B, Storlazzi C D, Erikson L H, et al. 2016. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability. Global and Planetary Change, 141: 25–38. doi: 10.1016/j.gloplacha.2016.03.009
    Smagorinsky J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91(3): 99–164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    Smit P B, Stelling G S, Roelvink D J A, et al. 2010. XBeach: Non-hydrostatic model: Validation, verification and model description. Delft, The Netherlands: Delft University of Technology
    Smit P, Zijlema M, Stelling G. 2013. Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coastal Engineering, 76: 1–16. doi: 10.1016/j.coastaleng.2013.01.008
    Storlazzi C D, Elias E P L, Berkowitz P. 2015. Many atolls may be uninhabitable within decades due to climate change. Scientific Reports, 5(1): 14546. doi: 10.1038/srep14546
    Storlazzi C D, Gingerich S B, Van Dongeren A, et al. 2018. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Science Advances, 4(4): eaay9741. doi: 10.1126/sciadv.aap9741
    Su Shih-Feng, Ma Gangfeng. 2018. Modeling two-dimensional infragravity motions on a fringing reef. Ocean Engineering, 153: 256–267. doi: 10.1016/j.oceaneng.2018.01.111
    Su Shih-Feng, Ma Gangfeng, Hsu Tai-Wen. 2015. Boussinesq modeling of spatial variability of infragravity waves on fringing reefs. Ocean Engineering, 101: 78–92. doi: 10.1016/j.oceaneng.2015.04.022
    Talavera L, Vila-Concejo A, Webster J M, et al. 2021. Morphodynamic controls for growth and evolution of a rubble coral island. Remote Sensing, 13(8): 1582. doi: 10.3390/rs13081582
    Tuck M E, Ford M R, Kench P S, et al. 2021. Sediment supply dampens the erosive effects of sea-level rise on reef islands. Scientific Reports, 11: 5523. doi: 10.1038/s41598-021-85076-x
    Tuck M E, Ford M R, Masselink G, et al. 2019a. Physical modelling of reef island topographic response to rising sea levels. Geomorphology, 345: 106833. doi: 10.1016/j.geomorph.2019.106833
    Tuck M E, Kench P S, Ford M R, et al. 2019b. Physical modelling of the response of reef islands to sea-level rise. Geology, 47(9): 803–806. doi: 10.1130/G46362.1
    Van Dongeren A, Lowe R, Pomeroy A, et al. 2013. Numerical modeling of low-frequency wave dynamics over a fringing coral reef. Coastal Engineering, 73: 178–190. doi: 10.1016/j.coastaleng.2012.11.004
    Van Thiel de Vries J S M. 2009. Dune erosion during storm surges [dissertation]. Delft: Delft University of Technology
    Yao Yu, Becker J M, Ford M R, et al. 2016. Modeling wave processes over fringing reefs with an excavation pit. Coastal Engineering, 109: 9–19. doi: 10.1016/j.coastaleng.2015.11.009
    Yao Yu, Chen Xianjin, Xu Conghao, et al. 2022. Numerical modelling of wave transformation and runup over rough fringing reefs using VARANS equations. Applied Ocean Research, 118: 102952. doi: 10.1016/j.apor.2021.102952
    Yao Yu, Huang Zhenghua, Monismith S G, et al. 2012. 1DH Boussinesq modeling of wave transformation over fringing reefs. Ocean Engineering, 47: 30–42. doi: 10.1016/j.oceaneng.2012.03.010
    Yao Yu, Liu Yichen, Chen Long, et al. 2020. Study on the wave-driven current around the surf zone over fringing reefs. Ocean Engineering, 198: 106968. doi: 10.1016/j.oceaneng.2020.106968
    Zijlema M, Stelling G, Smit P. 2011. SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering, 58(10): 992–1012. doi: 10.1016/j.coastaleng.2011.05.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (267) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return