Volume 42 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Jiang Li, Luying Zhao, Xiaoqian Gu, Chengxuan Li, Qian Zhang, Liping Fu, Ao Zhang. Vertical microbial profiling of water column reveals prokaryotic communities and distribution features of Antarctic Peninsula[J]. Acta Oceanologica Sinica, 2023, 42(9): 90-100. doi: 10.1007/s13131-023-2160-3
Citation: Jiang Li, Luying Zhao, Xiaoqian Gu, Chengxuan Li, Qian Zhang, Liping Fu, Ao Zhang. Vertical microbial profiling of water column reveals prokaryotic communities and distribution features of Antarctic Peninsula[J]. Acta Oceanologica Sinica, 2023, 42(9): 90-100. doi: 10.1007/s13131-023-2160-3

Vertical microbial profiling of water column reveals prokaryotic communities and distribution features of Antarctic Peninsula

doi: 10.1007/s13131-023-2160-3
Funds:  The Impact and Response of Antarctic Seas to Climate Change under contract No. IRFSOCC2020-2022.
More Information
  • Corresponding author: E-mail: lijiang@fio.org.cn
  • Received Date: 2022-06-20
  • Accepted Date: 2022-11-17
  • Available Online: 2023-10-16
  • Publish Date: 2023-09-01
  • Prokaryotic diversity and community composition in the water column of eight stations (63 samples) around the Antarctic Peninsula of the Southern Ocean were investigated. Through pyrosequencing of the V3–V4 hypervariable regions of the 16S ribosomal RNA gene, we characterized 4 720 089 valid reads representing 48 188 operational taxonomic units (OTUs, 97% similarity). The community was dominated by the phyla Pseudomonadota (original name: Proteobacteria, 47%), Oxyphotobacteria (26%), and Bacteroidota (original name: Bacteroidetes, 18%), which comprised an average of 91% of the total OTUs in all samples. The prokaryotic community composition varied vertically within the water column. Water column prokaryotic communities exhibited a clear depth profile, with higher microbial richness and higher diversity observed with increasing water depth. Cluster analysis of the community composition of water column samples exhibited a similar trend with depth. Correlation with environmental factors suggested distinct variation in prokaryotic community composition with changes in depth, salinity, temperature and dissolved oxygen levels. Functional prediction showed presence of active nitrogen, sulphur and methane metabolic cycles along the vertical transect of the studied region. These results will improve our knowledge of prokaryotic diversity and community composition at different depth of water column for better understanding of the microbial ecology and nutrient cycles in Antarctic Peninsula region of the Southern Ocean.
  • loading
  • Abell G C J, Bowman J P. 2005. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiology Ecology, 51(2): 265–277. doi: 10.1016/j.femsec.2004.09.001
    Agogué H, Lamy D, Neal P R, et al. 2011. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Molecular Ecology, 20(2): 258–274. doi: 10.1111/j.1365-294X.2010.04932.x
    Aislabie J M, Jordan S, Barker G M. 2008. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma, 144(1−2): 9–20. doi: 10.1016/j.geoderma.2007.10.006
    Aldunate M, De la Iglesia R, Bertagnolli A D, et al. 2018. Oxygen modulates bacterial community composition in the coastal upwelling waters off central Chile. Deep-Sea Research Part II: Topical Studies in Oceanography, 156: 68–79. doi: 10.1016/j.dsr2.2018.02.001
    Beman J M, Carolan M T. 2013. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone. Nature Communications, 4: 2705. doi: 10.1038/ncomms3705
    Brown M V, Lauro F M, DeMaere M Z, et al. 2012. Global biogeography of SAR11 marine bacteria. Molecular Systems Biology, 8: 595. doi: 10.1038/msb.2012.28
    Brown M V, Philip G K, Bunge J A, et al. 2009. Microbial community structure in the North Pacific Ocean. The ISME Journal, 3(12): 1374–1386. doi: 10.1038/ismej.2009.86
    Bryant J A, Stewart F J, Eppley J M, et al. 2012. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone. Ecology, 93(7): 1659–1673. doi: 10.1890/11-1204.1
    Caporaso J G, Kuczynski J, Stombaugh J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336. doi: 10.1038/nmeth.f.303
    Chong C W, Dunn M J, Convey P, et al. 2009a. Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biology, 32(11): 1571–1582. doi: 10.1007/s00300-009-0656-8
    Chong C W, Goh Y S, Convey P, et al. 2013. Spatial pattern in Antarctica: what can we learn from Antarctic bacterial isolates?. Extremophiles, 17(5): 733–745
    Chong C W, Tan G Y A, Wong R C S, et al. 2009b. DGGE fingerprinting of bacteria in soils from eight ecologically different sites around Casey Station, Antarctica. Polar Biology, 32(6): 853–860. doi: 10.1007/s00300-009-0585-6
    Cleary D F R, de Voogd N J, Polónia A R M, et al. 2015. Composition and predictive functional analysis of bacterial communities in seawater, sediment and sponges in the Spermonde Archipelago, Indonesia. Microbial Ecology, 70(4): 889–903. doi: 10.1007/s00248-015-0632-5
    DeLong E F, Preston C M, Mincer T, et al. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 311(5760): 496–503. doi: 10.1126/science.1120250
    Dinasquet J, Richert I, Logares R, et al. 2017. Mixing of water masses caused by a drifting iceberg affects bacterial activity, community composition and substrate utilization capability in the Southern Ocean. Environmental Microbiology, 19(6): 2453–2467. doi: 10.1111/1462-2920.13769
    Ducklow H W, Myers K M S, Erickson M, et al. 2011. Response of a summertime Antarctic marine bacterial community to glucose and ammonium enrichment. Aquatic Microbial Ecology, 64(3): 205–220. doi: 10.3354/ame01519
    Esper O, Zonneveld K A F. 2002. Distribution of organic-walled dinoflagellate cysts in surface sediments of the Southern Ocean (eastern Atlantic sector) between the Subtropical Front and the Weddell Gyre. Marine Micropaleontology, 46(1−2): 177–208. doi: 10.1016/S0377-8398(02)00041-5
    Fandino L B, Riemann L, Steward G F, et al. 2001. Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquatic Microbial Ecology, 23(2): 119–130
    Fierer N, Breitbart M, Nulton J, et al. 2007. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Applied and Environmental Microbiology, 73(21): 7059–7066. doi: 10.1128/AEM.00358-07
    Francis C A, Beman J M, Kuypers M M M. 2007. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. The ISME Journal, 1(1): 19–27. doi: 10.1038/ismej.2007.8
    Fuhrman J A, Cram J A, Needham D M. 2015. Marine microbial community dynamics and their ecological interpretation. Nature Reviews Microbiology, 13(3): 133–146. doi: 10.1038/nrmicro3417
    Ghiglione J F, Galand P E, Pommier T, et al. 2012. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proceedings of the National Academy of Sciences, 109(43): 17633–17638. doi: 10.1073/pnas.1208160109
    Ghiglione J F, Murray A E. 2012. Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environmental Microbiology, 14(3): 617–629. doi: 10.1111/j.1462-2920.2011.02601.x
    Giovannoni S J, Stingl U. 2005. Molecular diversity and ecology of microbial plankton. Nature, 437(7057): 343–348. doi: 10.1038/nature04158
    Giovannoni S J, Vergin K L. 2012. Seasonality in ocean microbial communities. Science, 335(6069): 671–676. doi: 10.1126/science.1198078
    Goffredi S K, Waren A, Orphan V J, et al. 2004. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Applied and Environmental Microbiology, 70(5): 3082–3090. doi: 10.1128/AEM.70.5.3082-3090.2004
    Grzymski J J, Riesenfeld C S, Williams T J, et al. 2012. A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters. The ISME Journal, 6(10): 1901–1915. doi: 10.1038/ismej.2012.31
    Hammer Ø, Harper D A T, Ryan P D. 2001. PAST: Palaeontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1): 1–9
    Hartmann M, Gomez-Pereira P, Grob C, et al. 2014. Efficient CO2 fixation by surface Prochlorococcus in the Atlantic Ocean. The ISME Journal, 8(11): 2280–2289
    Jamieson R E, Rogers A D, Billett D S M, et al. 2012. Patterns of marine bacterioplankton biodiversity in the surface waters of the Scotia Arc, Southern Ocean. FEMS Microbiology Ecology, 80(2): 452–468. doi: 10.1111/j.1574-6941.2012.01313.x
    Jayakumar A, Chang B X, Widner B, et al. 2017. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific Ocean. The ISME Journal, 11(10): 2356–2367. doi: 10.1038/ismej.2017.97
    Karlson A M L, Duberg J, Motwani N H, et al. 2015. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs. AMBIO, 44(S3): 413–426. doi: 10.1007/s13280-015-0660-x
    Kembel S W, Eisen J A, Pollard K S, et al. 2011. The phylogenetic diversity of metagenomes. PLoS ONE, 6(8): e23214. doi: 10.1371/journal.pone.0023214
    Landa M, Blain S, Christaki U, et al. 2016. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms. The ISME Journal, 10(1): 39–50. doi: 10.1038/ismej.2015.105
    Laws E A, Falkowski P G, Smith Jr W O, et al. 2000. Temperature effects on export production in the open ocean. Global Biogeochemical Cycles, 14(4): 1231–1246. doi: 10.1029/1999GB001229
    Liu Ning, Zhou Jialiang, Han Lujia, et al. 2017. Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting. Bioresource Technology, 241: 190–199. doi: 10.1016/j.biortech.2017.03.144
    Loescher C R, Großkopf T, Desai F D, et al. 2014. Facets of diazotrophy in the oxygen minimum zone waters off Peru. The ISME Journal, 8(11): 2180–2192. doi: 10.1038/ismej.2014.71
    Manganelli M, Malfatti F, Samo T J, et al. 2009. Major role of microbes in carbon fluxes during austral winter in the southern drake passage. PLoS ONE, 4(9): e6941. doi: 10.1371/journal.pone.0006941
    Mincer T J, Church M J, Taylor L T, et al. 2007. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific subtropical gyre. Environmental Microbiology, 9(5): 1162–1175. doi: 10.1111/j.1462-2920.2007.01239.x
    Murray A E, Grzymski J J. 2007. Diversity and genomics of Antarctic marine micro-organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1488): 2259–2271. doi: 10.1098/rstb.2006.1944
    Murray A E, Peng V, Tyler C, et al. 2011. Marine bacterioplankton biomass, activity and community structure in the vicinity of Antarctic icebergs. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(11−12): 1407–1421. doi: 10.1016/j.dsr2.2010.11.021
    Nakagawa S, Takai K, Inagaki F, et al. 2005. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environmental Microbiology, 7(10): 1619–1632. doi: 10.1111/j.1462-2920.2005.00856.x
    Oren A, Garrity G M. 2021. Valid publication of the names of forty-two phyla of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 71(10): 005056
    Park P K. 1969. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin 167. J. D. H. Strickland, T. R. Parsons. The Quarterly Review of Biology , 44 (3): 327.
    Pommier T, Neal P R, Gasol J M, et al. 2010. Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquatic Microbial Ecology, 61(3): 221–233. doi: 10.3354/ame01484
    R D Core Team. 2008. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org, ISBN 3-900051-07-0"[2022-03-21/2022-03-23]
    Segata N, Izard J, Waldron L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12(6): R60. doi: 10.1186/gb-2011-12-6-r60
    Selje N, Simon M, Brinkhoff T. 2004. A newly discovered Roseobacter cluster in temperate and polar oceans. Nature, 427(6973): 445–448. doi: 10.1038/nature02272
    Shivaji S, Kumari K, Kishore K H, et al. 2011. Vertical distribution of bacteria in a lake sediment from Antarctica by culture-independent and culture-dependent approaches. Research in Microbiology, 162(2): 191–203. doi: 10.1016/j.resmic.2010.09.020
    Swan B K, Martinez-Garcia M, Preston C M, et al. 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science, 333(6047): 1296–1300. doi: 10.1126/science.1203690
    The Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature, 486(7402): 207–214. doi: 10.1038/nature11234
    Thomas F, Hehemann J H, Rebuffet E, et al. 2011. Environmental and gut Bacteroidetes: the food connection. Frontiers in Microbiology, 2: 93
    Torstensson A, Dinasquet J, Chierici M, et al. 2015. Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice. Environmental Microbiology, 17(10): 3869–3881. doi: 10.1111/1462-2920.12865
    Treusch A H, Vergin K L, Finlay L A, et al. 2009. Seasonality and vertical structure of microbial communities in an ocean gyre. The ISME Journal, 3(10): 1148–1163. doi: 10.1038/ismej.2009.60
    Venkatachalam S, Matcher G F, Lamont T, et al. 2019. Influence of oceanographic variability on near-shore microbial communities of the sub-Antarctic Prince Edward Islands. Limnology and Oceanography, 64(1): 258–271. doi: 10.1002/lno.11035
    Venter J C, Remington K, Heidelberg J F, et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667): 66–74. doi: 10.1126/science.1093857
    Walsh E A, Kirkpatrick J B, Rutherford S D, et al. 2016. Bacterial diversity and community composition from seasurface to subseafloor. The ISME Journal, 10(4): 979–989. doi: 10.1038/ismej.2015.175
    Walsh E A, Smith D C, Sogin M L, et al. 2015. Bacterial and archaeal biogeography of the deep chlorophyll maximum in the South Pacific Gyre. Aquatic Microbial Ecology, 75(1): 1–13. doi: 10.3354/ame01746
    Ward B B. 1996. Nitrification and ammonification in aquatic systems. Life Support and Biosphere Science: International Journal of Earth Space, 3: 25–29
    Ward P, Whitehouse M, Brandon M, et al. 2003. Mesozooplankton community structure across the Antarctic Circumpolar Current to the north of South Georgia: Southern Ocean. Marine Biology, 143(1): 121–130. doi: 10.1007/s00227-003-1019-6
    West N J, Obernosterer I, Zemb O, et al. 2008. Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean. Environmental Microbiology, 10(3): 738–756. doi: 10.1111/j.1462-2920.2007.01497.x
    Wilkins D, Lauro F M, Williams T J, et al. 2013a. Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environmental Microbiology, 15(5): 1318–1333. doi: 10.1111/1574-6976.12007
    Wilkins D, van Sebille E, Rintoul S R, et al. 2013b. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nature Communications, 4: 2457. doi: 10.1038/ncomms3457
    Wilkins D, Yau S, Williams T J, et al. 2012. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiology Reviews, 37(3): 303–335
    Williams T J, Long E, Evans F, et al. 2012. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. The ISME Journal, 6(10): 1883–1900. doi: 10.1038/ismej.2012.28
    Wright J J, Konwar K M, Hallam S J. 2012. Microbial ecology of expanding oxygen minimum zones. Nature Reviews Microbiology, 10(6): 381–394. doi: 10.1038/nrmicro2778
    Yergeau E, Bokhorst S, Huiskes A H L, et al. 2007a. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiology Ecology, 59(2): 436–451
    Yergeau E, Bokhorst S, Kang Sanghoon, et al. 2012. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. The ISME Journal, 6(3): 692–702. doi: 10.1038/ismej.2011.124
    Yergeau E, Kang Sanghoon, He Zhili, et al. 2007b. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. The ISME Journal, 1(2): 163–179. doi: 10.1038/ismej.2007.24
    Yergeau E, Newsham K K, Pearce D A, et al. 2007c. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environmental Microbiology, 9(11): 2670–2682. doi: 10.1111/j.1462-2920.2007.01379.x
    Zinger L, Amaral-Zettler L A, Fuhrman J A, et al. 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE, 6(9): e24570. doi: 10.1371/journal.pone.0024570
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (252) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return