Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Mingliang Liu, Zemin Wang, Baojun Zhang, Xiangyu Song, Jiachun An. The variation in basal channels and basal melt rates of Pine Island Ice Shelf[J]. Acta Oceanologica Sinica, 2024, 43(1): 22-34. doi: 10.1007/s13131-023-2271-x
Citation: Mingliang Liu, Zemin Wang, Baojun Zhang, Xiangyu Song, Jiachun An. The variation in basal channels and basal melt rates of Pine Island Ice Shelf[J]. Acta Oceanologica Sinica, 2024, 43(1): 22-34. doi: 10.1007/s13131-023-2271-x

The variation in basal channels and basal melt rates of Pine Island Ice Shelf

doi: 10.1007/s13131-023-2271-x
Funds:  The National Natural Science Foundation of China under contract Nos 41941010 and 42006184; the Fundamental Research Funds for the Central Universities under contract No. 2042022kf1068.
More Information
  • Corresponding author: E-mail: bjzhang@whu.edu.cn
  • Received Date: 2023-08-11
  • Accepted Date: 2023-10-20
  • Available Online: 2024-02-23
  • Publish Date: 2024-01-01
  • In recent years, there has been a significant acceleration in the thinning, calving and retreat of the Pine Island Ice Shelf (PIIS). The basal channels, results of enhanced basal melting, have the potential to significantly impact the stability of the PIIS. In this study, we used a variety of remote sensing data, including Landsat, REMA DEM, ICESat-1 and ICESat-2 satellite altimetry observations, and IceBridge airborne measurements, to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework. We found that the basal channels are highly developed in the PIIS, with a total length exceeding 450 km. Most of the basal channels are ocean-sourced or groundingline-sourced basal channels, caused by the rapid melting under the ice shelf or near the groundingline. A raised seabed prevented warm water intrusion into the eastern branch of the PIIS, resulting in a lower basal melt rate in that area. In contrast, a deep-sea trough facilitates warm seawater into the mainstream and the western branch of the PIIS, resulting in a higher basal melt rate in the main-stream, and the surface elevation changes above the basal channels of the mainstream and western branch are more significant. The El Niño event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field, surface sea temperature and depth seawater temperature. Ocean and atmospheric changes were driven by El Niño, which can further explain and confirm the changes in the basal melting of the PIIS.
  • loading
  • Adusumilli S, Fricker H A, Siegfried M R, et al. 2018. Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016. Geophysical Research Letters, 45(9): 4086–4095, doi: 10.1002/2017GL076652
    Alley R B, Clark P U, Huybrechts P, et al. 2005. Ice-sheet and sea-level changes. Science, 310(5747): 456–460, doi: 10.1126/science.1114613
    Alley K E, Scambos T A, Siegfried M R, et al. 2016. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geoscience, 9(4): 290–293, doi: 10.1038/ngeo2675
    Bindschadler R, Vaughan D G, Vornberger P. 2011. Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica. Journal of Glaciology, 57(204): 581–595, doi: 10.3189/002214311797409802
    Bintanja R, van Oldenborgh G J, Drijfhout S S, et al. 2013. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nature Geoscience, 6(5): 376–379, doi: 10.1038/ngeo1767
    Borsa A A, Moholdt G, Fricker H A, et al. 2014. A range correction for ICESat and its potential impact on ice-sheet mass balance studies. The Cryosphere, 8(2): 345–357, doi: 10.5194/tc-8-345-2014
    Bradley A T, Bett D T, Dutrieux P, et al. 2022. The influence of Pine Island Ice Shelf calving on basal melting. Journal of Geophysical Research: Oceans, 127(9): e2022JC018621, doi: 10.1029/2022JC018621
    Chartrand A M, Howat I M. 2020. Basal channel evolution on the Getz ice shelf, west Antarctica. Journal of Geophysical Research: Earth Surface, 125(9): e2019JF005293, doi: 10.1029/2019JF005293
    Cornford S L, Martin D F, Payne A J, et al. 2015. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. The Cryosphere, 9(4): 1579–1600, doi: 10.5194/tc-9-1579-2015
    Davis P E D, Jenkins A, Nicholls K W, et al. 2018. Variability in basal melting beneath Pine Island Ice Shelf on weekly to monthly timescales. Journal of Geophysical Research: Oceans, 123(11): 8655–8669, doi: 10.1029/2018JC014464
    De Rydt J, Holland P R, Dutrieux P, et al. 2014. Geometric and oceanographic controls on melting beneath Pine Island Glacier. Journal of Geophysical Research: Oceans, 119(4): 2420–2438, doi: 10.1002/2013JC009513
    Dotto T S, Garabato A C N, Bacon S, et al. 2019. Wind-driven processes controlling oceanic heat delivery to the Amundsen Sea, Antarctica. Journal of Physical Oceanography, 49(11): 2829–2849, doi: 10.1175/JPO-D-19-0064.1
    Dutrieux P, De Rydt J, Jenkins A, et al. 2014. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science, 343(6167): 174–178, doi: 10.1126/science.1244341
    Farrell S L, Kurtz N, Connor L N, et al. 2012. A first assessment of IceBridge snow and ice thickness data over Arctic sea ice. IEEE Transactions on Geoscience and Remote Sensing, 50(6): 2098–2111, doi: 10.1109/TGRS.2011.2170843
    Favier L, Durand G, Cornford S L, et al. 2014. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nature Climate Change, 4(2): 117–121, doi: 10.1038/nclimate2094
    Fricker H A, Padman L. 2006. Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 33(15): L15502, doi: 10.1029/2006gl026907
    Fricker H A, Padman L. 2012. Thirty years of elevation change on Antarctic Peninsula ice shelves from multi mission satellite radar altimetry. Journal of Geophysical Research: Oceans, 117(C2): C02026, doi: 10.1029/2011JC007126
    Gardner A S, Fahnestock M A, Scambos T A. 2019. [update to time of data download]: MEaSUREs ITS_LIVE landsat image-pair glacier and ice sheet surface velocities: version 1. Data archived at National Snow and Ice Data Center, doi: 10.5067/IMR9D3PEI28U, https://its-live.jpl.nasa.gov/[2023-01-23]
    Good S A, Martin M J, Rayner N A. 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12): 6704–6716, doi: 10.1002/2013JC009067
    Goward S N, Masek J G, Williams D L, et al. 2001. The Landsat 7 mission: terrestrial research and applications for the 21st century. Remote Sensing of Environment, 78(1–2): 3–12, doi: 10.1016/S0034-4257(01)00262-0
    Gregg M C. 1987. Diapycnal mixing in the thermocline: a review. Journal of Geophysical Research: Oceans, 92(C5): 5249–5286, doi: 10.1029/JC092iC05p05249
    Hersbach H, Bell B, Berrisford P, et al. 2019. ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 10: 24381
    Howat I M, Porter C, Smith B E, et al. 2019. The reference elevation model of Antarctica. The Cryosphere, 13(2): 665–674, doi: 10.5194/tc-13-665-2019
    Jacobs S S, Hellmer H H, Jenkins A. 1996. Antarctic ice sheet melting in the southeast Pacific. Geophysical Research Letters, 23(9): 957–960, doi: 10.1029/96GL00723
    Joughin I, Smith B E, Holland D M. 2010. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 37(20): L20502, doi: 10.1029/2010GL044819
    Joughin I, Smith B E, Medley B. 2014. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344(6185): 735–738, doi: 10.1126/science.1249055
    Joughin I, Smith B E, Schoof C G. 2019. Regularized coulomb friction laws for ice sheet sliding: application to Pine Island Glacier, Antarctica. Geophysical Research Letters, 46(9): 4764–4771, doi: 10.1029/2019GL082526
    Kerr R C, McConnochie C D. 2015. Dissolution of a vertical solid surface by turbulent compositional convection. Journal of Fluid Mechanics, 765: 211–228, doi: 10.1017/jfm.2014.722
    Kurtz N T, Farrell S L. 2011. Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophysical Research Letters, 38(20): L20505, doi: 10.1029/2011GL049216
    Liang Qi, Zhou Chunxia, Zheng Lei. 2021. Mapping basal melt under the Shackleton ice shelf, East Antarctica, from CryoSat-2 radar altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 5091–5099, doi: 10.1109/JSTARS.2021.3077359
    Ligtenberg S R M, Kuipers Munneke P, van den Broeke M R. 2014. Present and future variations in Antarctic firn air content. The Cryosphere, 8(5): 1711–1723, doi: 10.5194/tc-8-1711-2014
    Liu Yan, Moore J C, Cheng Xiao, et al. 2015. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proceedings of the National Academy of Sciences of the United States of America, 112(11): 3263–3268, doi: 10.1073/pnas.1415137112
    Liu Zhiwei, Zhu Jianjun, Fu Haiqiang, et al. 2020. Evaluation of the vertical accuracy of open global DEMs over steep terrain regions using ICESat data: a case study over Hunan Province, China. Sensors, 20(17): 4865, doi: 10.3390/s20174865
    Logan L, Catania G, Lavier L, et al. 2013. A novel method for predicting fracture in floating ice. Journal of Glaciology, 59(216): 750–758, doi: 10.3189/2013JoG12J210
    Markus T, Neumann T, Martino A, et al. 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sensing of Environment, 190: 260–273, doi: 10.1016/j.rse.2016.12.029
    McGrath D, Steffen K, Rajaram H, et al. 2012. Basal crevasses on the Larsen C Ice Shelf, Antarctica: implications for meltwater ponding and hydrofracture. Geophysical Research Letters, 39(16): L16504, doi: 10.1029/2012GL052413
    Moholdt G, Padman L, Fricker H A. 2014. Basal mass budget of Ross and Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. Journal of Geophysical Research: Earth Surface, 119(11): 2361–2380, doi: 10.1002/2014JF003171
    Morlighem M, Rignot E J, Binder T, et al. 2018. BedMachine Antarctica v1: a new subglacial bed topography and ocean bathymetry dataset of Antarctica combining mass conservation, gravity inversion and streamline diffusion. In: Proceedings of the American Geophysical Union, Fall Meeting 2018. Washington: AGU
    Nias I J, Cornford S L, Payne A J. 2016. Contrasting the modelled sensitivity of the Amundsen Sea Embayment ice streams. Journal of Glaciology, 62(233): 552–562, doi: 10.1017/jog.2016.40
    Noh M J, Howat I M. 2017. The surface extraction from TIN based search-space minimization (SETSM) algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 55–76, doi: 10.1016/j.isprsjprs.2017.04.019
    Paolo F S, Fricker H A, Padman L. 2015. Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232): 327–331, doi: 10.1126/science.aaa0940
    Paolo F S, Padman L, Fricker H A, et al. 2018. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern oscillation. Nature Geoscience, 11(2): 121–126, doi: 10.1038/s41561-017-0033-0
    Payne A J, Vieli A, Shepherd A P, et al. 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophysical Research Letters, 31(23): L23401, doi: 10.1029/2004GL021284
    Pritchard H D, Ligtenberg S R M, Fricker H A, et al. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395): 502–505, doi: 10.1038/nature10968
    Rignot E, Mouginot J, Scheuchl B, et al. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America, 116(4): 1095–1103, doi: 10.1073/pnas.1812883116
    Rignot E, Steffen K. 2008. Channelized bottom melting and stability of floating ice shelves. Geophysical Research Letters, 35(2): L02503, doi: 10.1029/2007GL031765
    Rosevear M G, Gayen B, Galton-Fenzi B K. 2022. Regimes and transitions in the basal melting of Antarctic ice shelves. Journal of Physical Oceanography, 52(10): 2589–2608, doi: 10.1175/JPO-D-21-0317.1
    Roy D P, Wulder M A, Loveland T R, et al. 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment, 145: 154–172, doi: 10.1016/j.rse.2014.02.001
    Schmidt B E, Washam P, Davis P E D, et al. 2023. Heterogeneous melting near the Thwaites Glacier groundingline. Nature, 614(7948): 471–478, doi: 10.1038/s41586-022-05691-0
    Seroussi H, Morlighem M, Rignot E, et al. 2014. Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years. The Cryosphere, 8(5): 1699–1710, doi: 10.5194/tc-8-1699-2014
    Seroussi H, Nakayama Y, Larour E, et al. 2017. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters, 44(12): 6191–6199, doi: 10.1002/2017GL072910
    Shean D E, Joughin I R, Dutrieux P, et al. 2019. Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica. The Cryosphere, 13(10): 2633–2656, doi: 10.5194/tc-13-2633-2019
    Shepherd A, Fricker H A, Farrell S L. 2018. Trends and connections across the Antarctic cryosphere. Nature, 558(7709): 223–232, doi: 10.1038/s41586-018-0171-6
    Shepherd A, Wingham D, Payne T, et al. 2003. Larsen ice shelf has progressively thinned. Science, 302(5646): 856–859, doi: 10.1126/science.1089768
    Silvano A, Rintoul S R, Herraiz-Borreguero L. 2016. Ocean-ice shelf interaction in East Antarctica. Oceanography, 29(4): 130–143, doi: 10.5670/oceanog.2016.105
    Stanton T P, Shaw W J, Truffer M, et al. 2013. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica. Science, 341(6151): 1236–1239, doi: 10.1126/science.1239373
    Steig E J, Ding Q, Battisti D S, et al. 2012. Tropical forcing of Circumpolar Deep Water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Annals of Glaciology, 53(60): 19–28, doi: 10.3189/2012AoG60A110
    Suga Y, Ogawa H, Ohno K, et al. 2003. Detection of surface temperature from Landsat-7/ETM+. Advances in Space Research, 32(11): 2235–2240, doi: 10.1016/S0273-1177(03)90548-5
    Tang Chengjia, Li Yuansheng, Chen Zhenlou, et al. 2008. A review on studies of Antarctic ice shelves and advances in Chinese research on Amery ice shelf. Chinese Journal of Polar Research (in Chinese), 20(3): 265–274
    Thoma M, Jenkins A, Holland D, et al. 2008. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophysical Research Letters, 35(18): L18602, doi: 10.1029/2008GL034939
    van Wessem J M, van de Berg W J, Noël B P Y, et al. 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 2: Antarctica (1979–2016). The Cryosphere, 12(4): 1479–1498, doi: 10.5194/tc-12-1479-2018
    Vaughan D G, Corr H F J, Bindschadler R A, et al. 2012. Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. Journal of Geophysical Research: Earth Surface, 117(F3): F03012, doi: 10.1029/2012JF002360
    Vermote E, Justice C, Claverie M, et al. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185: 46–56, doi: 10.1016/j.rse.2016.04.008
    Wåhlin A K, Yuan X, Björk G, et al. 2010. Inflow of warm circumpolar deep water in the central Amundsen shelf. Journal of Physical Oceanography, 40(6): 1427–1434, doi: 10.1175/2010JPO4431.1
    Walker D P, Jenkins A, Assmann K M, et al. 2013. Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. Journal of Geophysical Research: Oceans, 118(6): 2906–2918, doi: 10.1002/jgrc.20212
    Wang Xianwei, Gong Peng, Zhao Yuanyuan, et al. 2013. Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sensing of Environment, 132: 131–144, doi: 10.1016/j.rse.2013.01.005
    Wang Zemin, Song Xiangyu, Zhang Baojun, et al. 2020. Basal channel extraction and variation analysis of Nioghalvfjerdsfjorden ice shelf in Greenland. Remote Sensing, 12(9): 1474, doi: 10.3390/rs12091474
    WCRP Global Sea Level Budget Group. 2018. Global sea-level budget 1993-present. Earth System Science Data, 10(3): 1551–1590, doi: 10.5194/essd-10-1551-2018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (210) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return