Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Yongcan Zu, Yue Fang, Shuangwen Sun, Libao Gao, Yang Yang, Guijun Guo. Seasonal variation of mesoscale eddy intensity in the global ocean[J]. Acta Oceanologica Sinica, 2024, 43(1): 48-58. doi: 10.1007/s13131-023-2278-3
Citation: Yongcan Zu, Yue Fang, Shuangwen Sun, Libao Gao, Yang Yang, Guijun Guo. Seasonal variation of mesoscale eddy intensity in the global ocean[J]. Acta Oceanologica Sinica, 2024, 43(1): 48-58. doi: 10.1007/s13131-023-2278-3

Seasonal variation of mesoscale eddy intensity in the global ocean

doi: 10.1007/s13131-023-2278-3
Funds:  The National Key R&D Program of China under contract No. 2022YFC2807604; the Basic Scientific Fund for National Public Research Institutes of China under contract Nos 2022S02, 2022Q03 and 2018S02; the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2018SDKJ0105-3; the National Natural Science Foundation of China under contract Nos 41876030, 41976021, 41876231, 4190060432 and 41706220; the program Impact and Response of Antarctic Seas to Climate Change under contract No. IRASCC 01-01-01A; the Taishan Scholars Project Fund under contract No. ts20190963.
More Information
  • Corresponding author: Yue Fang, Email: yfang@fio.org.cn
  • Received Date: 2023-06-03
  • Accepted Date: 2023-11-09
  • Available Online: 2023-12-05
  • Publish Date: 2024-01-01
  • Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion. Characterizing by rotational speed, the eddy intensity is one of the most fundamental properties of an eddy. However, the seasonal spatiotemporal variation in eddy intensity has not been examined from a global ocean perspective. In this study, we unveil the seasonal spatiotemporal characteristics of eddy intensity in the global ocean by using the latest satellite-altimetry-derived eddy trajectory data set. The results suggest that the eddy intensity has a distinct seasonal variation, reaching a peak in spring while attaining a minimum in autumn in the Northern Hemisphere and the opposite in the Southern Hemisphere. The seasonal variation of eddy intensity is more intense in the tropical-subtropical transition zones within latitudinal bands between 15° and 30° in the western Pacific Ocean, the northwestern Atlantic Ocean, and the eastern Indian Ocean because baroclinic instability in these areas changes sharply. Further analysis found that the seasonal variation of baroclinic instability precedes the eddy intensity by a phase of 2–3 months due to the initial perturbations needing time to grow into mesoscale eddies.
  • loading
  • Aguedjou H M A, Dadou I, Chaigneau A, et al. 2019. Eddies in the tropical Atlantic Ocean and their seasonal variability. Geophysical Research Letters, 46(21): 12156–12164, doi: 10.1029/2019GL083925
    Andersson M, Orvik K A, Lacasce J H, et al. 2011. Variability of the Norwegian Atlantic Current and associated eddy field from surface drifters. Journal of Geophysical Research: Oceans, 116(C8): C08032, doi: 10.1029/2011JC007078
    Bashmachnikov I, Carton X. 2012. Surface signature of Mediterranean water eddies in the Northeastern Atlantic: Effect of the upper ocean stratification. Ocean Science, 8(6): 931–943, doi: 10.5194/os-8-931-2012
    Bashmachnikov I, Carton X, Belonenko T V. 2014. Characteristics of surface signatures of Mediterranean water eddies. Journal of Geophysical Research: Oceans, 119(10): 7245–7266, doi: 10.1002/2014JC010244
    Böning C W, Budich R G. 1992. Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. Journal of Physical Oceanography, 22(4): 361–381, doi: 10.1175/1520-0485(1992)022<0361:EDIAPE>2.0.CO;2
    Bretherton C S, Widmann M, Dymnikov V P, et al. 1999. The effective number of spatial degrees of freedom of a time-varying field. Journal of Climate, 12(7): 1990–2009, doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
    Chaigneau A, Eldin G, Dewitte B. 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Progress in Oceanography, 83(1−4): 117–123, doi: 10.1016/j.pocean.2009.07.012
    Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119, doi: 10.1016/j.pocean.2008.10.013
    Chang Y L, Oey L Y. 2014. Instability of the North Pacific subtropical countercurrent. Journal of Physical Oceanography, 44(3): 818–833, doi: 10.1175/JPO-D-13-0162.1
    Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332, doi: 10.1126/science.1208897
    Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216, doi: 10.1016/j.pocean.2011.01.002
    Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. Journal of Geophysical Research: Oceans, 117(C5): C05021, doi: 10.1029/2011JC007724
    Chen Gengxin, Wang Qiang, Chu Xiaoqing. 2021. Accelerated spread of Fukushima’s waste water by ocean circulation. The Innovation, 2(2): 100119, doi: 10.1016/j.xinn.2021.100119
    Chu Xiaoqing, Xue Huijie, Qi Yiquan, et al. 2014. An exceptional anticyclonic eddy in the South China Sea in 2010. Journal of Geophysical Research: Oceans, 119(2): 881–897, doi: 10.1002/2013JC009314
    Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5: 3294, doi: 10.1038/ncomms4294
    Eady E T. 1949. Long waves and cyclone waves. Tellus, 1(3): 33–52, doi: 10.3402/tellusa.v1i3.8507
    Faghmous J H, Frenger I, Yao Yuanshun, et al. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2: 150028, doi: 10.1038/sdata.2015.28
    Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608–612, doi: 10.1038/ngeo1863
    Frenger I, Münnich M, Gruber N, et al. 2015. Southern Ocean eddy phenomenology. Journal of Geophysical Research: Oceans, 120(11): 7413–7449, doi: 10.1002/2015JC011047
    Frenger I, Münnich M, Gruber N. 2018. Imprint of Southern Ocean mesoscale eddies on chlorophyll. Biogeosciences, 15(15): 4781–4798, doi: 10.5194/bg-15-4781-2018
    Gaube P, McGillicuddy D J, Chelton D B, et al. 2014. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. Journal of Geophysical Research: Oceans, 119(12): 8195–8220, doi: 10.1002/2014JC010111
    Good S A, Martin M J, Rayner N A. 2013. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12): 6704–6716, doi: 10.1002/2013JC009067
    Halo I, Penven P, Backeberg B, et al. 2014. Mesoscale eddy variability in the southern extension of the East Madagascar Current: Seasonal cycle, energy conversion terms, and eddy mean properties. Journal of Geophysical Research: Oceans, 119(10): 7324–7356, doi: 10.1002/2014JC009820
    He Yinghui, Feng Ming, Xie Jieshuo, et al. 2017. Spatiotemporal variations of mesoscale eddies in the Sulu Sea. Journal of Geophysical Research: Oceans, 122(10): 7867–7879, doi: 10.1002/2017 JC013153
    Hu Shijian, Sprintall J, Guan Cong, et al. 2020. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Science Advances, 6(6): eaax7727, doi: 10.1126/sciadv.aax7727
    Kurczyn J A, Beier E, Lavín M F, et al. 2012. Mesoscale eddies in the northeastern Pacific tropical-subtropical transition zone: Statistical characterization from satellite altimetry. Journal of Geophysical Research: Oceans, 117(C10): C10021, doi: 10.1029/2012JC007970
    Kurian J, Colas F, Capet X, et al. 2011. Eddy properties in the California Current System. Journal of Geophysical Research: Oceans, 116(C8): C08027, doi: 10.1029/2010JC006895
    Liu Yu, Dong Changming, Guan Yuping, et al. 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 68: 54–67, doi: 10.1016/j.dsr.2012.06.001
    Livezey R E, Chen W Y. 1983. Statistical field significance and its determination by Monte Carlo techniques. Monthly Weather Review, 111(1): 46–59, doi: 10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2
    Martínez-Moreno J, Hogg A M, England M H. 2022. Climatology, seasonality, and trends of spatially coherent ocean eddies. Journal of Geophysical Research: Oceans, 127(7): e2021JC017453, doi: 10.1029/2021JC017453
    Mason E, Pascual A, McWilliams J C. 2014. A new sea surface height-based code for oceanic mesoscale eddy tracking. Journal of Atmospheric and Oceanic Technology, 31(5): 1181–1188, doi: 10.1175/JTECH-D-14-00019.1
    Pegliasco C, Busché C, Faugère Y. 2022. Mesoscale eddy trajectory atlas PRODUCT META3.2 DT. https://doi.org/10.24400/527896/A01-2022.005.220209[2022-09-27/2023-06-01]
    Peng Qihua, Xie Shangping, Wang Dongxiao, et al. 2022. Surface warming-induced global acceleration of upper ocean currents. Science Advances, 8(16): eabj8394, doi: 10.1126/sciadv.abj8394
    Qiu Bo. 1999. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10): 2471–2486, doi: 10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2
    Qiu Bo, Chen Shuiming. 2013. Concurrent decadal mesoscale eddy modulations in the Western North Pacific Subtropical Gyre. Journal of Physical Oceanography, 43(2): 344–358, doi: 10.1175/JPO-D-12-0133.1
    Qiu Bo, Chen Shuiming, Klein P, et al. 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 44(12): 3079–3098, doi: 10.1175/JPO-D-14-0071.1
    Robinson A R, McWilliams J C. 1974. The baroclinic instability of the open ocean. Journal of Physical Oceanography, 4(3): 281–294, doi: 10.1175/1520-0485(1974)004<0281:TBIOTO>2.0.CO;2
    Schütte F, Brandt P, Karstensen J. 2016. Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean. Ocean Science, 12(3): 663–685, doi: 10.5194/os-12-663-2016
    Shi Fei, Luo Yiyong, Wu Renhao, et al. 2023. Contrasting trends in short-lived and long-lived mesoscale eddies in the Southern Ocean since the 1990s. Environmental Research Letters, 18(3): 034042, doi: 10.1088/1748-9326/acbf6b
    Shum C K, Werner R A, Sandwell D T, et al. 1990. Variations of global mesoscale eddy energy observed from Geosat. Journal of Geophysical Research: Oceans, 95(C10): 17865–17876, doi: 10.1029/JC095iC10p17865
    Smith K S. 2007. The geography of linear baroclinic instability in Earth’s oceans. Journal of Marine Research, 65(5): 655–683, doi: 10.1357/002224007783649484
    Stammer D. 1997. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. Journal of Physical Oceanography, 27(8): 1743–1769, doi: 10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2
    Stammer D. 1998. On eddy characteristics, eddy transports, and mean flow properties. Journal of Physical Oceanography, 28(4): 727–739, doi: 10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2
    Sun Wenjin, Dong Changming, Wang Ruyun, et al. 2017. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 122(2): 1476–1496, doi: 10.1002/2016JC012226
    Sun Bowen, Liu Chuanyu, Wang Fan. 2019. Global meridional eddy heat transport inferred from Argo and altimetry observations. Scientific Reports, 9(1): 1345, doi: 10.1038/s41598-018-38069-2
    Yang Guang, Yu Weidong, Yuan Yeli, et al. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733–6750, doi: 10.1002/2015JC 011130
    Zhai Xiaoming, Greatbatch R J, Kohlmann J D. 2008. On the seasonal variability of eddy kinetic energy in the Gulf Stream region. Geophysical Research Letters, 35(24): L24609, doi: 10.1029/2008GL036412
    Zhang Ningning, Liu Guoqing, Liu Qinyan, et al. 2020. Spatiotemporal variations of mesoscale eddies in the Southeast Indian Ocean. Journal of Geophysical Research: Oceans, 125(8): e2019JC015712, doi: 10.1029/2019JC015712
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349, doi: 10.1038/srep24349
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324, doi: 10.1126/science.1252418
    Zhou Kuanbo, Xu Yanping, Kao Shuh-Ji, et al. 2023. Changes in nutrient stoichiometry in responding to diatom growth in cyclonic eddies. Geoscience Letters, 10: 12, doi: 10.1186/s40562-023-00269-8
    Zu Yongcan, Fang Yue, Sun Shuangwen, et al. 2022. The seasonality of mesoscale eddy intensity in the Southeastern Tropical Indian Ocean. Frontiers in Marine Science, 9: 855832, doi: 10.3389/fmars.2022.855832
    Zu Yongcan, Sun Shuangwen, Zhao Wei, et al. 2019. Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea. Acta Oceanologica Sinica, 38(4): 29–38, doi: 10.1007/s13131-018-1222-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (601) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return