YAN Quanshu, SHI Xuefa. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc:A review[J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2
Citation: YAN Quanshu, SHI Xuefa. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc:A review[J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2

Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc:A review

doi: 10.1007/s13131-014-0400-2
  • Received Date: 2013-01-28
  • Rev Recd Date: 2013-04-09
  • Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Okinawa Trough lavas: sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and subcontinental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the "seafloor spreading" process in the southwest segment, "rift propagation" process in the middle segment, and "crustal extension" process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.
  • loading
  • Bacon C R, Druit T H. 1988. Compositional evolution of the zoned calcalkalinemagma chamber of Mount Magma, Crater Lake Oregon.Contributions to Mineralogy and Petrology, 98: 224-256
    Bibee L D, Shor Jr G G, Lu R S. 1980. Inter-arc spreading in the MarianaTrough. Marine Geology, 35: 183-197
    Castillo P. 1988. The Dupal anomaly as a trace of the upwelling lowermantle. Nature, 336: 667-670
    Chen Lirong, Zhai Shikui, Shen Shunxi. 1993. Isotopic characteristicsand ages of pumices from the Okinawa Trough. Science in China(Series B) (in Chinese), 23(3): 324-329
    Cloos M. 1993. Lithospheric buoyancy and collisional orogenesis—subduction of oceanic plateaus, continental margins, islandarcs, spreading ridges, and seamounts. Geological Society ofAmerica Bulletin, 105: 715-737
    Faure G. 1986. Principle of Isotope Geology. 2nd edition. New York:John Wiley and Sons, 589
    Foder R V, Verrer S K. 1984. Rift-zone magmatism: petrology of basalticrocks transitional from CFB to MORB, southeastern Brazil margin.Contributions to Mineralogy and Petrology, 88: 307-321
    Fryer P. 1996. Evolution of the Mariana Convergent Plate Margin System.Reviews of Geophysics, 34: 89-125
    Goldstein S L. 1988. Decoupled evolution of Nd and Sr isotopes in thecontinental crust and mantle. Nature, 336: 733-738
    Garland F, Hawkesworth C J, Mantovani M S. 1995. Description andpetrogenesis of the paraná rhyolites, southern Brazil. Journal ofPetrology, 36: 1193-1227
    Gerya T V, Fossati D, Canetini C, et al. 2009. Dynamic effects of aseismicridge subduction: numerical modeling. European Journal ofMineralogy, 21: 649-661
    Hamelin B, Allègre C J. 1985. Large scale regional units in the depletedupper mantle revealed by an isotopic study of the south-west Indianridge. Nature, 315: 196-198
    Hall R. 2002. Cenozoic geological and plate tectonic evolution of SEAsia and the SW Pacific: computer-based reconstructions, modeland animations. Journal of Asian Earth Sciences, 20(4): 353-431
    Han Bo, Zhang Xunhua, Pei Jianxin, et al. 2007. Characteristics of crustmantlein East China sea and adjacent regions. Progress in Geophysics(in Chinese), 22(2): 376-382
    Han Zongzhu, Yu Hang, Zhao Guangtao, et al. 2005. Petrology and geochemistryof the basalt from the middle part of Okinawa. MarineSciences (in Chinese), 29(6): 17-21
    Han Zongzhu, Li Chao, Lai Zhiqing. 2008. Geochemical features and originof the pumice from middle and south Okinawa Trough. Transactionsof Oceanology and Limnology (in Chinese), 39(3): 61-66
    Hart S R. 1984. A large-scale isotope anomaly in the southern hemispheremantle. Nature, 309: 753-757
    Hawkins J W. 1995. Evolution of the Lau Basin-Insights from ODP Leg135. In: Taylor B, Natland J, eds. Active Margins and Marginal Basinsof the Western Pacific. Geophysical Monograph 88, AmericanGeophysical Union, 125-173
    Hickey-Vargas R. 1991. Isotope characteristics of submarine lavas fromthe Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate. Earth and PlanetaryScience Letters, 107: 290-304
    Hickey-Vargas R. 1998. Origin of the Indian Ocean-type isotopic signaturein basalts from Philippine Sea plate spreading centers:an assessment of local versus large-scale processes. Journal ofGeophysical Research, 103: 20963-20979
    Hickey-Vargas R. 2005. Basalt and tonalite from the Amami Plateau,northern West Philippine Basin: New Early Cretaceous ages andgeochemical results, and their petrologic and tectonic implications.Island Arc, 14: 653-665
    Hickey-Vargas R, Hergt J M, Spadea P. 1995. The Indian Ocean-typeisotopic signature in western Pacific marginal basins: origin andsignificance. In: Taylor B, Natland J, eds. Active Margins and MarginalBasins of the Western Pacific. Geophysical Monograph 88,American Geophysical Union, 88: 175-197
    Hickey-Vargas R, Bizimis M, Deschamps A. 2008. Onset of the IndianOcean isotopic signature in the Philippine Sea Plate: Hf andPb isotope evidence from Early Cretaceous terranes. Earth andPlanetary Science Letters, 268: 255-267
    Hoang N, Uto K. 2006. Upper mantle isotopic components beneath theRyukyu arc system: Evidence for ‘back-arc’entrapment of PacificMORB mantle. Earth and Planetary Science Letters, 249: 229-240
    Honma H, Kusakabe M, Kagami H, et al. 1991. Major and trace elementchemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios ofrocks from the spreading center of the Okinawa Trough. GeochemicalJournal, 25(2): 121-136
    Huang Peng, Li Anchun, Jiang Hengyi. 2006a. Geochemical featuresand their geological implications of volcanic rocks from thenorthern and middle Okinawa Trough. Acta Petrologica Sinica(in Chinese), 22(6): 1703-1712
    Huang Peng, Li Anchun, Hu Ningjing, et al. 2006b. Sr-Nd isotopiccharacteristics and U-series ages of volcanics from the OkinawaTrough. Science in China (Series D) (in Chinese), 36(4): 351-358
    Ishizuka H, Kawanobe Y, Sakai H. 1990. Petrology and geochemistry ofvolcanic rocks dredged from the Okinawa Trough,an active backarcbasin. Geochemical Journal, 24: 75-92
    Kimura M. 1985. Back-arc rifting in the Okinawa Trough. Marine andPetroleum Geology, 2: 222-239
    Lee C S, Shor G G, Bibee L D, et al. 1980. Okinawa Trough: Origin of aback-arc basin. Marine Geology, 35: 219-241
    Letouzey J, Kimura M. 1985. Okinawa trough genesis: structure andevolution of a back arc basin developed in a continent. Marineand Petroleum Geology, 2: 111-130
    Li Jiabiao. 2008. Regional Geology in East China Sea. Beijing: OceanPress
    Li Naisheng. 2001. On Tectonic problems of the Okinawa trough. ChineseJournal of Oceanology and Limnology, 19(3): 255-364
    Li Weiran, Yang Zuosheng, Wang Yongjie, et al. 1997a. The petrochemicalfeatures of the volcanic rocks in Okinawa Trough and theirgeological significance. Acta Petrologica Sinica (in Chinese),13(4): 1703-1712
    Li W, Yang Zuosheng, Zhang Baomin, et al. 1997b. Study on the olivinetholeiite of the southern Okinawa Trough. Oceanologica et LimnologicaSinica (in Chinese), 28: 665-672
    Liang Ruicai, Wu Jinlong, Liu Baohua, et al. 2001. Linear magneticanomalies and tectonic development for the middle OkinawaTrough. Acta Oceanologica Sinica (in Chinese), 23(2): 69-78
    Ma Weilin, Wang Xianlan, Ji Xianglong, et al. 2004. Areal difference ofmiddle and southern basalts from the Okinawa Trough and itsgenesis study. Acta Geologica Sinica (in Chinese), 78(6): 758-769
    Meng Xianwei, Du Dewen, Wu Jinlong, et al. 1999. Sr-Nd isotopic geochemistryand its geoloShi Xuefa. 2011. Geological comparative studies of JapanArc System and Kyushu-Palau Arc. Acta Oceanologica Sinica,30(4): 107-121
    Zeng Zhigang, Yu Shaoxiong, Wang Xiaoyuan, et al. 2010. Geochemicaland isotopic characteristics of volcanic rocks from the northernEast China Sea shelf margin and the Okinawa Trough. Acta OceanologicaSinica, 29(4): 48-61
    Zou H B, Zindler A, Xu X S, et al. 2000. Major, trace element, and Nd, Srand Pb isotope studies of Cenozoic basalts in SE China: mantlesources, regional variations, and tectonic significance. ChemicalGeology, 171: 33-47
    Zhai Shikui, Gan Xiaoqun. 1995. Study of basalt from the hydrothermalfield of the Okinawa trough. Oceanologica et Limnologica Sinica(in Chinese), 26(2): 115-123
    Zhao D, Yu S, Ohtani E. 2011. East Asia: Seismotectonics, magmatismand mantle dynamics. Journal of Asian Earth Sciences, 40: 689-709
    Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review ofEarth and Planetary Sciences, 14: 493-571s of pumices from the OkinawaTrough. Oceanologica et Limnologica Sinica (in Chinese), 18(4):313-319
    Rudnick R L, Fountain D M. 1995. Nature and composition of the continentalcrust: A lower crustal perspective. Reviews of Geophysics,33: 267-309
    Savov I, Hickey-Vargas R, D'Antonio M, et al. 2006. Petrology and geochemistryof West Philippine Basin Basalts and Early Palau- KyushuArc Volcanic Clasts from ODP Leg 195, Site 1201D: Implicationsfor the early history of the Izu-Bonin-Mariana Arc. Journalof Petrology, 47: 277-299
    Shinjo R.1998. Petrochemistry and tectonic significance of the emergedlate Cenozoic basalts behind the Okinawa Trough Ryukyu arcsystem. Journal of Volcanology and Geothermal Research, 80:39-53
    Shinjo R, Chung S L, Kato Y, et al. 1999. Geochemical and Sr—Nd isotopiccharacteristics of volcanic rocks from the Okinawa Troughand Ryukyu Arc: Implications for the evolution of a young intracontinentalback arc basin. Journal of Geophysical Research,104(B5): 10591-10608
    Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodalmagmatism at the Okinawa Trough, an incipient back-arcbasin. Lithos, 54: 117-137
    Sibuet J C, Deffontaines B, Hsu S K, et al. 1998. Okinawa Trough backarcbasin: early tectonic and magmatic evolution. Journal of GeophysicalResearch, 103: 30245-30267
    Staudigel P, Zindler A, Hart S R, et al. 1984. The isotope systematics of ajuvenile intra-plate volcano: Pb, Nd and Sr isotope ratios of basaltsfrom loihi Seamount, Hawaii. Earth and Planetary ScienceLetters, 69: 13-29
    Staudigel H, Koopers A P, Plank T A, et al. 2010. Seamounts in the subductionfactory. Oceanography, 23(1): 176-181
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics ofocean basalt: Implications for mantle composition and processes.Geological Society London Special Publications, 42: 323-345
    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Compositionand Evolution. Oxford: Blackwell
    Tetreault J L, Buiter S J H. 2012. Geodynamic models of terrane accretion:Testing the fate of island arcs, oceanic plateaus, and continentalfragments in subduction zones. Journal of GeophysicalResearch, 117: B08403, doi: 10.1029/2012JB009316
    Ulrich M, Hémond C, Nonnotte P, et al. 2012. OIB/seamount recyclingas a possible process for E-MORB genesis. Geochem GeophysGeosyst, 13: Q0AC19, doi: 10.1029/2012GC004078
    Vogt P R. 1973. Subduction and aseismic ridges. Nature, 241: 189-191
    Wang K L, Chung S L, Chen C H, et al. 1999. Post-collisional magmatismaround northern Taiwan and its relation with opening of theOkinawa Trough. Tectonophysics, 308: 363-376
    Wang Shugong, Liang Ruicai, Wang Yong, et al. 1998. Gravity and magneticcharacteristics of the north part of the Okinawa Trough andgeological interpretation. Marine Geology & Quaternary Geology(in Chinese), 18(4): 19-27
    Wu Shiying. 2000. Hydrothermal Sulfide Resources in Global Seafloor(in Chinese). Beijing: China Ocean Press, 21-25, 41-43
    Yamazaki T, Murakami F, Saito E. 1993. Mode of seafloor spreading inthe northern Mariana Trough. Tectonophysics, 221: 207-222
    Yan Quanshu,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1277) PDF downloads(2067) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return