Swati Sharma, Abhay B. Fulke, Asha Chaubey. Bioprospection of marine actinomycetes: recent advances, challenges and future perspectives[J]. Acta Oceanologica Sinica, 2019, 38(6): 1-17. doi: 10.1007/s13131-018-1340-z
Citation: Swati Sharma, Abhay B. Fulke, Asha Chaubey. Bioprospection of marine actinomycetes: recent advances, challenges and future perspectives[J]. Acta Oceanologica Sinica, 2019, 38(6): 1-17. doi: 10.1007/s13131-018-1340-z

Bioprospection of marine actinomycetes: recent advances, challenges and future perspectives

doi: 10.1007/s13131-018-1340-z
Funds:  The CSIR-NIO contribution number 6263.
More Information
  • Corresponding author: These authors contributed equally to this work.; These authors contributed equally to this work.
  • Received Date: 2018-01-13
  • Accepted Date: 2018-07-03
  • Publish Date: 2019-06-01
  • In exploring new sources for economically important products, marine environment draws particular attention because of its remarkable diversity and extreme conditions; it is known to produce metabolic products of great value. It represents untapped source for the discovery of novel secondary metabolites with varying potential such as antibiotic, anti-tumor, antifouling and cytotoxic properties. Marine actinomycetes distributed throughout the marine environment from shallow to deep sea sediments have proved to be a finest source for this discovery. Secondary metabolites derived from marine actinomycetes have proved their worth in industries based on the research on their properties and wide range applications. Spotlight of the review is range of marine based actinomycetes products and significant research in this field. This shows the capability of marine actinomycetes as bioactive metabolite producers. Additionally, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery from which traditional resources such as marine actinobacteria has decreased due to declining yields. The aim is in the context of promoting fruitful and profitable results in the near future. The recent surfacing of new technologies for bioprospection of marine actinomycetes are very promising, resulting in high quality value added products, and will be de?ning a new era for bioactive compounds with medical and biotechnological applications.
  • †These authors contributed equally to this work.
  • loading
  • Abdel-Mageed W M, Milne B F, Wagner M, et al. 2010. Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Organic & Biomolecular Chemistry, 8(10): 2352–2362
    Adinarayana G, Venkateshan M R, Bapiraju V V, et al. 2006. Cytotoxic compounds from the marine actinobacterium. Bioorganicheskaia Khimiia, 32(3): 328–334
    Akondi K B, Lakshmi V V. 2013. Emerging trends in genomic approaches for microbial bioprospecting. OMICS: A Journal of Integrative Biology, 17(2): 61–70. doi: 10.1089/omi.2012.0082
    Anzai K, Ohno M, Nakashima T, et al. 2008. Taxonomic distribution of Streptomyces species capable of producing bioactive compounds among strains preserved at NITE/NBRC. Applied Microbiology and Biotechnology, 80(2): 287–295. doi: 10.1007/s00253-008-1510-6
    Arbat A B, Zodpe S N. 2014. Biodiversity of Actinomycetes species isolated from saline belt of Akola district. Indian Journal of Applied Research, 4(7): 450–452
    Arumugam M, Mitra A, Jaisankar P, et al. 2010. Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications. Applied Microbiology and Biotechnology, 86(1): 109–117. doi: 10.1007/s00253-009-2311-2
    Asolkar R N, Jensen P R, Kauffman C A, et al. 2006. Daryamides A-C, weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. Journal of Natural Products, 69(12): 1756–1759. doi: 10.1021/np0603828
    Asolkar R N, Schröder D, Heckmann R, et al. 2004. Helquinoline, a new tetrahydroquinoline antibiotic from Janibacter limosus Hel. The Journal of Antibiotics, 57(1): 17–23. doi: 10.7164/antibiotics.57.17
    Atta H M. 2007. Production of vitamin B12 by Streptomyces fulvissimus. Egyptian Journal of Biomedical Sciences, 23(1): 166–184
    Balagurunathan R, Radhakrishnan M. 2007. Microbial siderophores-gateway for iron removal. Envis Centre Newsletter, 5: 7–9
    Baltz R H. 2008. Renaissance in antibacterial discovery from actinomycetes. Current Opinion in Pharmacology, 8(5): 557–563. doi: 10.1016/j.coph.2008.04.008
    Barcina I, Iriberri J, Egea L. 1987. Enumeration, isolation and some physiological properties of actinomycetes from sea water and sediment. Systematic and Applied Microbiology, 10(1): 85–91. doi: 10.1016/S0723-2020(87)80016-4
    Bérdy J. 2005. Bioactive microbial metabolites. The Journal of Antibiotics, 58(1): 1–26. doi: 10.1038/ja.2005.1
    Bertsch A, Coello N. 2005. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresource Technology, 96(15): 1703–1708. doi: 10.1016/j.biortech.2004.12.026
    Bhat M K. 2000. Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5): 355–383. doi: 10.1016/S0734-9750(00)00041-0
    Biabani M A F, Laatsch H, Helmke E, et al. 1997. δ-Indomycinone: a new member of pluramycin class of antibiotics isolated from marine Streptomyces sp. The Journal of Antibiotics, 50(10): 874–877. doi: 10.7164/antibiotics.50.874
    Binayke A, Ghorbel S, Hmidet N, et al. 2018. Analysis of diversity of actinomycetes from arid and saline soils at Rajasthan, India. Environmental Sustainability, 1(1): 61–70. doi: 10.1007/s42398-018-0003-5
    Bister B, Bischoff D, Ströbele M, et al. 2004. Abyssomicin C—A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angewandte Chemie International Edition, 43(9): 2574–2576
    Blin K, Medema M H, Kazempour D, et al. 2013. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Research, 41(W1): W204–W212. doi: 10.1093/nar/gkt449
    Böckle B, Galunsky B, Müller R. 1995. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Applied & Environmental Microbiology, 61(10): 3705–3710
    Bode W, Huber R. 1992. Natural protein proteinase inhibitors and their interaction with proteinases. European Journal of Biochemistry, 204(2): 433–451. doi: 10.1111/ejb.1992.204.issue-2
    Bredholdt H, Galatenko O A, Engelhardt K, et al. 2007. Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environmental Microbiology, 9(11): 2756–2764. doi: 10.1111/emi.2007.9.issue-11
    Brinkhoff T, Santegoeds C M, Sahm K, et al. 1998. A polyphasic approach to study the diversity and vertical distribution of sulfur-oxidizing Thiomicrospira species in coastal sediments of the German Wadden sea. Applied and Environmental Microbiology, 64(12): 4650–4657
    Bruns A, Philipp H, Cypionka H, et al. 2003. Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden sea. International Journal of Systematic and Evolutionary Microbiology, 53(6): 1917–1923. doi: 10.1099/ijs.0.02735-0
    Bruntner C, Binder T, Pathom-Aree W, et al. 2005. Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. The Journal of Antibiotics, 58(5): 346–349. doi: 10.1038/ja.2005.43
    Bull A T, Stach J E M, Ward A C, et al. 2005. Marine actinobacteria: perspectives, challenges, future directions. Antonie van Leeuwenhoek, 87(1): 65–79. doi: 10.1007/s10482-004-6562-8
    Burg R W, Miller B M, Baker E E, et al. 1979. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrobial Agents and Chemotherapy, 15(3): 361–367. doi: 10.1128/AAC.15.3.361
    Burkholder P R, Pfister R M, Leitz F H. 1966. Production of a pyrrole antibiotic by a marine bacterium. Applied Microbiology, 14(4): 649–653
    Butler M S. 2004. The role of natural product chemistry in drug discovery. Journal of Natural Products, 67(12): 2141–2153. doi: 10.1021/np040106y
    Cal S, Aparicio J F, De Los Reyes-Gavilan C G, et al. 1995. A novel exocytoplasmic endonuclease from Streptomyces antibioticus. Biochemical Journal, 306: 93–100. doi: 10.1042/bj3060093
    Carlson J C, Li Shengying, Burr D A, et al. 2009. Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. Journal of Natural Products, 72(11): 2076–2079. doi: 10.1021/np9005597
    Castillo U, Myers S, Browne L, et al. 2005. Scanning electron microscopy of some endophytic streptomycetes in snakevine-Kennedia nigricans. Scanning, 27(6): 305–311. doi: 10.1002/sca.4950270606
    Challis G L. 2008. Genome mining for novel natural product discovery. Journal of Medicinal Chemistry, 51(9): 2618–2628. doi: 10.1021/jm700948z
    Chandramohan D, Ramu S, Natarajan R C. 1972. Cellulolytic activity of marine Streptomycetes. Current Science, 41: 245–246
    Chapman T M, Perry C M. 2004. Everolimus. Drugs, 64(8): 861–872. doi: 10.2165/00003495-200464080-00005
    Charan R D, Schlingmann G, Janso J, et al. 2004. Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. Journal of Natural Products, 67(8): 1431–1433. doi: 10.1021/np040042r
    Charusanti P, Fong N L, Nagarajan H, et al. 2012. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One, 7(3): e33727. doi: 10.1371/journal.pone.0033727
    Chater K F. 2006. Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1469): 761–768. doi: 10.1098/rstb.2005.1758
    Chauhan D, Catley L, Li Guilan, et al. 2005. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell, 8(5): 407–419. doi: 10.1016/j.ccr.2005.10.013
    Chen Yunqiu, Ntai I, Ju K S, et al. 2012. A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria. Journal of Proteome Research, 11(1): 85–94. doi: 10.1021/pr2009115
    Cheng Yuanbin, Jensen P R, Fenical W. 2013. Cytotoxic and antimicrobial napyradiomycins from two marine-derived Streptomyces strains. European Journal of Organic Chemistry, 2013(18): 3751–3757. doi: 10.1002/ejoc.201300349
    Cho J Y, Kwon H C, Williams P G, et al. 2006. Actinofuranones A and B, polyketides from a marine-derived bacterium related to the genus Streptomyces (Actinomycetales). Journal of Natural Products, 69(3): 425–428. doi: 10.1021/np050402q
    Cho J Y, Williams P G, Kwon H C, et al. 2007. Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. Journal of Natural Products, 70(8): 1321–1328. doi: 10.1021/np070101b
    Choi H J, Kim B H, Kim J D, et al. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biological Control, 33(3): 335–343. doi: 10.1016/j.biocontrol.2005.03.007
    Comroe J H Jr. 1978. Pay dirt: the story of streptomycin. Part I. from waksman to waksman. The American Review of Respiratory Disease, 117(4): 773–781
    Corre C, Challis G L. 2009. New natural product biosynthetic chemistry discovered by genome mining. Natural Product Reports, 26(8): 977–986. doi: 10.1039/b713024b
    Cuesta C, García-de-la-Fuente R, Abad M, et al. 2012. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents. Journal of Environmental Management, 95(S1): S280–S284
    Cundliffe E. 1989. How antibiotic-producing organisms avoid suicide. Annual Review of Microbiology, 43: 207–233. doi: 10.1146/annurev.mi.43.100189.001231
    Das S, Lyla P S, Khan S A. 2008. Distribution and generic composition of culturable marine actinomycetes from the sediments of Indian continental slope of Bay of Bengal. Chinese Journal of Oceanology and Limnology, 26(2): 166–177. doi: 10.1007/s00343-008-0166-5
    Das M, Royer T V, Leff L G. 2007. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73(3): 756–767. doi: 10.1128/AEM.01170-06
    Dasari V R R K, Muthyala M K K, Nikku M Y, et al. 2012. Novel Pyridinium compound from marine actinomycete, Amycolatopsis alba var. nov. DVR D4 showing antimicrobial and cytotoxic activities in vitro. Microbiological Research, 167(6): 346–351. doi: 10.1016/j.micres.2011.12.003
    Dharmaraj S. 2011. Study of L-asparaginase production by Streptomyces noursei MTCC 10469, isolated from marine sponge Callyspongia diffusa. Iranian Journal of Biotechnology, 90(2): 12–108
    Dhevagi P, Poorani E. 2006. Isolation and characterization of L-asparaginase from marine actinomycetes. Indian Journal of Biotechnology, 5: 514–520
    Dionisi H M, Lozada M, Olivera N L. 2012. Bioprospection of marine microorganisms: Biotechnological applications and methods. Revista Argentina de Microbiologia, 44(1): 49–60
    Dixit V S, Pant A. 2000. Hydrocarbon degradation and protease production by Nocardiopsis sp. NCIM 5124. Letters in Applied Microbiology, 30(1): 67–69. doi: 10.1046/j.1472-765x.2000.00665.x
    Donadio S, Monciardini P, Alduina R, et al. 2002. Microbial technologies for the discovery of novel bioactive metabolites. Journal of Biotechnology, 99(3): 187–198. doi: 10.1016/S0168-1656(02)00209-2
    El-Gendy M M A, Shaaban M, Shaaban K A, et al. 2008. Essramycin: a first triazolopyrimidine antibiotic isolated from nature. The Journal of Antibiotics, 61(3): 149–157. doi: 10.1038/ja.2008.124
    Ferrer M, Beloqui A, Timmis K N, et al. 2009. Metagenomics for mining new genetic resources of microbial communities. Journal of Molecular Microbiology and Biotechnology, 16(1–2): 109–123
    Fiedler H P, Bruntner C, Bull A T, et al. 2005. Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek, 87(1): 37–42. doi: 10.1007/s10482-004-6538-8
    Fischbach M A, Walsh C T. 2006. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chemical Reviews, 106(8): 3468–3496. doi: 10.1021/cr0503097
    Floss H G, Yu T W. 2005. Rifamycin-mode of action, resistance, and biosynthesis. Chemical Reviews, 105(2): 621–632. doi: 10.1021/cr030112j
    Gallagher K A, Fenical W, Jensen P R. 2010. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes. Current Opinion in Biotechnology, 21(6): 794–800. doi: 10.1016/j.copbio.2010.09.010
    Garcia-Fernández L F, Reyes F, Sánchez-Puelles J M. 2002. The marine pharmacy: new antitumoral compounds from the sea. Pharmaceut News, 9: 495–501
    Goodfellow M, Haynes J A. 1984. Actinomycetes in marine sediments. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V, eds. Biological, Biochemical, and Biomedical Aspects of Actinomycetes. Orlando: Academic Press, 453–472
    Goodfellow M, Williams S T. 1983. Ecology of actinomycetes. Annual Review of Microbiology, 37: 189–216. doi: 10.1146/annurev.mi.37.100183.001201
    Gorajana A, Venkatesan M, Vinjamuri S, et al. 2007. Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. Microbiological Research, 162(4): 322–327. doi: 10.1016/j.micres.2006.01.012
    Haefner B. 2003. Drugs from the deep: marine natural products as drug candidates. Drug Discovery Today, 8(12): 536–544. doi: 10.1016/S1359-6446(03)02713-2
    Hameş-Kocabaş E E, Uzel A. 2012. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples. Journal of Microbiological Methods, 88(3): 342–347. doi: 10.1016/j.mimet.2012.01.010
    Han S K, Nedashkovskaya O I, Mikhailov V V, et al. 2003. Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. International Journal of Systematic and Evolutionary Microbiology, 53(6): 2061–2066. doi: 10.1099/ijs.0.02627-0
    Handelsman J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68(4): 669–685. doi: 10.1128/MMBR.68.4.669-685.2004
    Hardt I H, Jensen P R, Fenical W. 2000. Neomarinone, and new cytotoxic marinone derivatives, produced by a marine filamentous bacterium (actinomycetales). Tetrahedron Letters, 41(13): 2073–2076. doi: 10.1016/S0040-4039(00)00117-9
    Harmsen H, Prieur D, Jeanthon C. 1997. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Applied and Environmental Microbiology, 63(7): 2876–2883
    Hartsel S, Bolard J. 1996. Amphotericin B: new life for an old drug. Trends in Pharmacological Sciences, 17(12): 445–449. doi: 10.1016/S0165-6147(96)01012-7
    Hawas U W, Shaaban M, Shaaban K A, et al. 2009. Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine Streptomycete. Journal of Natural Products, 72(12): 2120–2124. doi: 10.1021/np900160g
    Hayakawa M. 2008. Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica, 22(1): 12–19. doi: 10.3209/saj.SAJ220103
    Hayakawa Y, Shirasaki S, Kawasaki T, et al. 2007. Structures of new cytotoxic antibiotics, piericidins C7 and C8. The Journal of Antibiotics, 60(3): 201–203. doi: 10.1038/ja.2007.23
    Helfrich E J N, Reiter S, Piel J. 2014. Recent advances in genome-based polyketide discovery. Current Opinion in Biotechnology, 29: 107–115. doi: 10.1016/j.copbio.2014.03.004
    Hertweck C. 2009. The biosynthetic logic of polyketide diversity. Angewandte Chemie International Edition, 48(26): 4688–4716. doi: 10.1002/anie.v48:26
    Higginbotham S J, Murphy C D. 2010. Identification and characterisation of a Streptomyces sp. isolate exhibiting activity against methicillin-resistant Staphylococcus aureus. Microbiological Research, 165(1): 82–86. doi: 10.1016/j.micres.2008.12.004
    Hohmann C, Schneider K, Bruntner C, et al. 2009a. Albidopyrone, a new α-pyrone-containing metabolite from marine-derived Streptomyces sp. NTK 227. The Journal of Antibiotics, 62(2): 75–79. doi: 10.1038/ja.2008.15
    Hohmann C, Schneider K, Bruntner C, et al. 2009b. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. The Journal of Antibiotics, 62(2): 99–104. doi: 10.1038/ja.2008.24
    Hong Kui, Gao Anhui, Xie Qingyi, et al. 2009. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Marine Drugs, 7(1): 24–44. doi: 10.3390/md7010024
    Hough D W, Danson M J. 1999. Extremozymes. Current Opinion in Chemical Biology, 3(1): 39–46. doi: 10.1016/S1367-5931(99)80008-8
    Hwang K S, Kim H U, Charusanti P, et al. 2014. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnology Advances, 32(2): 255–268. doi: 10.1016/j.biotechadv.2013.10.008
    Imada C. 2005. Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie van Leeuwenhoek, 87(1): 59–63. doi: 10.1007/s10482-004-6544-x
    Janssen P H, Yates P S, Grinton B E, et al. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68(5): 2391–2396. doi: 10.1128/AEM.68.5.2391-2396.2002
    Jensen P R. 2010. Linking species concepts to natural product discovery in the post-genomic era. Journal of Industrial Microbiology & Biotechnology, 37(3): 219–224
    Jensen P R, Gontang E, Mafnas C, et al. 2005a. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environmental Microbiology, 7(7): 1039–1048. doi: 10.1111/emi.2005.7.issue-7
    Jensen P R, Mafnas C. 2006. Biogeography of the marine actinomycete Salinispora. Environmental Microbiology, 8(11): 1881–1888. doi: 10.1111/emi.2006.8.issue-11
    Jensen P R, Mincer T J, Williams P G, et al. 2005b. Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek, 87(1): 43–48. doi: 10.1007/s10482-004-6540-1
    Jensen P R, Williams P G, Oh D C, et al. 2007. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Applied and Environmental Microbiology, 73(4): 1146–1152. doi: 10.1128/AEM.01891-06
    Jeong S Y, Shin H J, Kim T S, et al. 2006. Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. The Journal of Antibiotics, 59(4): 234–240. doi: 10.1038/ja.2006.33
    Jeyadharshan V N. 2013. Production and partial purification of protease by actinomyces species. International Journal of Scientific and Research Publications, 3(4): 1–3
    Jørgensen H, Degnes K F, Dikiy A, et al. 2010. Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. Applied and Environmental Microbiology, 76(1): 283–293. doi: 10.1128/AEM.00744-09
    Kaeberlein T, Lewis K, Epstein S S. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 296(5570): 1127–1129. doi: 10.1126/science.1070633
    Kalisz H M. 1988. Microbial proteinases. Advances in Biochemical Engineering/Biotechnology, 36: 1–65. doi: 10.1007/BFb0047943
    Kathiresan K. 2015. Bioprospecting of marine organisms for novel bioactive compounds. Scientific Transactions in Environment and Technovation, 1(3): 107–120
    Kathiresan K, Balagurunathan R, Masilamani S M. 2005. Fungicidal activity of marine actinomycetes against phytopathogenic fungi. Indian Journal of Biotechnology, 4: 271–276
    Kellenberger E, Hofmann A, Quinn R J. 2011. Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs. Natural Product Reports, 28(9): 1483–1492. doi: 10.1039/c1np00026h
    Kennedy J, Flemer B, Jackson S A, et al. 2010. Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Marine Drugs, 8(3): 608–628. doi: 10.3390/md8030608
    Kersten R D, Yang Yuliang, Xu Yuquan, et al. 2011. A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nature Chemical Biology, 7(11): 794–802. doi: 10.1038/nchembio.684
    Kersten R D, Ziemert N, Gonzalez D J, et al. 2013. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proceedings of the National Academy of Sciences of the United States of America, 110(47): E4407–E4416. doi: 10.1073/pnas.1315492110
    Kieser T, Bibb M J, Buttner M J, et al. 2000. Preparation and analysis of genomic and plasmid DNA. In: Kieser J, Bibb M J, Buttner M J, et al., eds. Practical Streptomyces Genetics. Norwich, UK: The John Innes Foundation, 162–170
    Kim T K, Fuerst J A. 2006. Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata: culture-dependent and culture-independent approaches. Environmental Microbiology, 8(8): 1460–1470. doi: 10.1111/emi.2006.8.issue-8
    Kock I, Maskey R P, Biabani M A F, et al. 2005. 1-hydroxy-1-norresistomycin and resistoflavin methyl ether: new antibiotics from marine-derived Streptomycetes. The Journal of Antibiotics, 58(8): 530–534. doi: 10.1038/ja.2005.73
    Komaki H, Sakurai K, Hosoyama A, et al. 2018. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Scientific Reports, 8(1): 6888. doi: 10.1038/s41598-018-24921-y
    Krug D, Müller R. 2014. Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Natural Product Reports, 31(6): 768–783. doi: 10.1039/c3np70127a
    Kumar C G, Takagi H. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances, 17(7): 561–594. doi: 10.1016/S0734-9750(99)00027-0
    Kunz C, Ludwig A, Bertheau Y, et al. 1992. Evaluation of the antifungal activity of the purified chitinase 1 from the filamentous fungus Aphanocladium album. FEMS Microbiology Letters, 90(2): 105–109. doi: 10.1111/fml.1992.90.issue-2
    Kurtböke D İ. 2012. Biodiscovery from rare actinomycetes: an eco-taxonomical perspective. Applied Microbiology and Biotechnology, 93(5): 1843–1852. doi: 10.1007/s00253-012-3898-2
    Kwon H C, Kauffman C A, Jensen P R, et al. 2006. Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. Journal of the American Chemical Society, 128(5): 1622–1632. doi: 10.1021/ja0558948
    Lam K S. 2006. Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology, 9(3): 245–251. doi: 10.1016/j.mib.2006.03.004
    Leach B E, Calhoun K M, Johnson L E, et al. 1953. Chartreusin, a new antibiotic produced by Streptomyces chartreusis, a new species. Journal of the American Chemical Society, 75(16): 4011–4012. doi: 10.1021/ja01112a040
    Lee S Y, Kim H U, Park J H, et al. 2009. Metabolic engineering of microorganisms: general strategies and drug production. Drug Discovery Today, 14(1–2): 78–88
    Lee J G, Yoo I D, Kim W G. 2007. Differential antiviral activity of benzastatin C and its dechlorinated derivative from Streptomyces nitrosporeus. Biological & Pharmaceutical Bulletin, 30(4): 795–797
    Li Xiancui, Dobretsov S, Xu Ying, et al. 2006. Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling, 22(3): 187–194. doi: 10.1080/08927010600780771
    Li Sumei, Tian Xinpeng, Niu Siwen, et al. 2011. Antimycins from marine Streptomyces sp. SCSIO 1635 from the South China Sea. Natural Product Research and Development, 23(1): 10–14
    Macherla V R, Liu J, Bellows C, et al. 2005. Glaciapyrroles A, B, and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. Journal of Natural Products, 68(5): 780–783. doi: 10.1021/np049597c
    MacLean D, Jones J D G, Studholme D J. 2009. Application of ‘next-generation’ sequencing technologies to microbial genetics. Nature Reviews Microbiology, 7(4): 287–296
    Magarvey N A, Keller J M, Bernan V, et al. 2004. Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Applied and Environmental Microbiology, 70(12): 7520–7529. doi: 10.1128/AEM.70.12.7520-7529.2004
    Maldonado L A, Fenical W, Jensen P R, et al. 2005. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. International Journal of Systematic and Evolutionary Microbiology, 55(5): 1759–1766. doi: 10.1099/ijs.0.63625-0
    Malet-Cascón L, Romero F, Espliego-Vázquez F, et al. 2003. IB-00208, a new cytotoxic polycyclic xanthone produced by a marine derived Actinomadura. I. Isolation of the strain, taxonomy and biological activities. The Journal of Antibiotics, 56: 219–225. doi: 10.7164/antibiotics.56.219
    Mann J. 2001. Natural products as immunosuppressive agents. Natural Product Reports, 18(4): 417–430. doi: 10.1039/b001720p
    Maskey R P, Helmke E, Laatsch H. 2003a. Himalomycin A and B: isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. The Journal of Antibiotics, 56(11): 942–949. doi: 10.7164/antibiotics.56.942
    Maskey R P, Li F C, Qin Song, et al. 2003b. Chandrananimycins A-C: production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. The Journal of antibiotics, 56(7): 622–629. doi: 10.7164/antibiotics.56.622
    Maskey R P, Sevvana M, Usón I, et al. 2004. Gutingimycin: a highly complex metabolite from a marine Streptomycete. Angewandte Chemie Internation Edition, 43(10): 1281–1283. doi: 10.1002/(ISSN)1521-3773
    McArthur K A, Mitchell S S, Tsueng G, et al. 2008. Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. Journal of Natural Products, 71(10): 1732–1737. doi: 10.1021/np800286d
    Miller E D, Kauffman C A, Jensen P R, et al. 2007. Piperazimycins: cytotoxic hexadepsipeptides from a marine-derived bacterium of the genus Streptomyces. The Journal of Organic Chemistry, 72(2): 323–330. doi: 10.1021/jo061064g
    Mincer T J, Fenical W, Jensen P R. 2005. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Applied and Environmental Microbiology, 71(11): 7019–7028. doi: 10.1128/AEM.71.11.7019-7028.2005
    Mincer T J, Jensen P R, Kauffman C A, et al. 2002. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Applied and Environmental Microbiology, 68(10): 5005–5011. doi: 10.1128/AEM.68.10.5005-5011.2002
    Mo S, Kim J H, Cho K W. 2009. Enzymatic properties of an extracellular phospholipase C purified from a marine Streptomycete. Bioscience, Biotechnology, and Biochemistry, 73(9): 2136–2137. doi: 10.1271/bbb.90323
    Monciardini P, Sosio M, Cavaletti L, et al. 2002. New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes. FEMS Microbiology Ecology, 42(3): 419–429
    Moore B S, Trischman J A, Seng D, et al. 1999. Salinamides, antiinflammatory depsipeptides from a marine Streptomycete. Journal of Organic Chemistry, 64(4): 1145–1150. doi: 10.1021/jo9814391
    Moran M A, Rutherford L T, Hodson R E. 1995. Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Applied and Environmental Microbiology, 61(10): 3695–3700
    Mukhopadyay R P, Chandra A L. 1993. Protease of keratinolytic Streptomycetes to unhair goat skin. Indian Journal of Experimental Biology, 31: 557–558
    Muyzer G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2(3): 317–322. doi: 10.1016/S1369-5274(99)80055-1
    Nachtigall J, Kulik A, Helaly S, et al. 2011. Atacamycins A–C, 22-membered antitumor macrolactones produced by Streptomyces sp. C38. The Journal of Antibiotics, 64(12): 775–780. doi: 10.1038/ja.2011.96
    Naveena P, Sakthiselvan P, Elaiyaraju P, et al. 2012. Ultrasound induced production of thrombinase by marine actinomycetes: Kinetic and optimization studies. Biochemical Engineering Journal, 61: 34–42. doi: 10.1016/j.bej.2011.12.007
    Newman D J, Cragg G M. 2007. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3): 461–477. doi: 10.1021/np068054v
    Nichols D, Lewis K, Orjala J, et al. 2008. Short peptide induces an “uncultivable” microorganism to grow in vitro. Applied and Environmental Microbiology, 74(15): 4889–4897. doi: 10.1128/AEM.00393-08
    Nicieza R G, Huergo J, Connolly B A, et al. 1999. Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. The Journal of Biological Chemistry, 274(29): 20366–20375. doi: 10.1074/jbc.274.29.20366
    Niehaus F, Bertoldo C, Kähler M, et al. 1999. Extremophiles as a source of novel enzymes for industrial application. Applied Microbiology and Biotechnology, 51(6): 711–729. doi: 10.1007/s002530051456
    Nimnoi P, Pongsilp N, Lumyong S. 2010. Genetic diversity and community of endophytic actinomycetes within the roots of Aquilaria crassna Pierre ex Lec assessed by Actinomycetes-specific PCR and PCR-DGGE of 16S rRNA gene. Biochemical Systematics and Ecology, 38(4): 595–601. doi: 10.1016/j.bse.2010.07.005
    Niu Xuemei, Li Shenghong, Görls H, et al. 2007. Abyssomicin E, a highly functionalized polycyclic metabolite from Streptomyces species. Organic Letters, 9(13): 2437–2440. doi: 10.1021/ol0705999
    Noval J J, Nickerson W J. 1959. Decomposition of native keratin by Streptomyces fradiae. Journal of Bacteriology, 77(3): 251–263
    Ochi K, Hosaka T. 2013. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Applied Microbiology and Biotechnology, 97(1): 87–98. doi: 10.1007/s00253-012-4551-9
    Oh D C, Gontang E A, Kauffman C A, et al. 2008. Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. Journal of Natural Products, 71(4): 570–575. doi: 10.1021/np0705155
    Okami Y, Hotta K. 1988. Search and discovery of new antibiotics. In: Goodfellow M, Williams S T, Mordarski M, eds. Actinomycetes in Biotechnology. San Diego: Academic Press, 33–67
    Olano C, Méndez C, Salas J A. 2009. Antitumor compounds from marine actinomycetes. Marine Drugs, 7(2): 210–248. doi: 10.3390/md7020210
    Oldfield C, Wood N T, Gilbert S C, et al. 1998. Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie van Leeuwenhoek, 74(1–3): 119–132
    Olsen G J, Lane D J, Giovannoni S J, et al. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annual Review of Microbiology, 40: 337–365. doi: 10.1146/annurev.mi.40.100186.002005
    Pace N R, Stahl D A, Lane D J, et al. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. In: Marshall K C, ed. Advances in Microbial Ecology. Boston, MA: Springer, 1–55
    Pacheco da Rosa J, Korenblum E, Franco-Cirigliano M N, et al. 2013. Streptomyces lunalinharesii Strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes. BioMed Research International, 2013: 309769
    Pathom-Aree W, Stach J E M, Ward A C, et al. 2006. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles, 10(3): 181–189. doi: 10.1007/s00792-005-0482-z
    Payne D J, Gwynn M N, Holmes D J, et al. 2007. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Reviews Drug Discovery, 6(1): 29–40. doi: 10.1038/nrd2201
    Pecznska-Czoch W, Mordarski M. 1988. Actinomycete enzymes. In: Goodfellow M, Williams S T, Mordarski M, eds. Actinomycetes in Biotechnology. London: Academic Press, 219–283
    Pedersen J C. 1992. Natamycin as a fungicide in agar media. Applied and Environmental Microbiology, 58(3): 1064–1066
    Pfleiderer E, Reiner R. 1988. Microorganisms in processing of leather. In: Rehm H J, Reed G, eds. Biotechnology. Germany: VCH Verlagsgesellschaft, 729–743
    Piel J. 2004. Metabolites from symbiotic bacteria. Natural Product Reports, 21(4): 519–538. doi: 10.1039/b310175b
    Pimentel-Elardo S M, Kozytska S, Bugni T S, et al. 2010. Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean sponges. Marine Drugs, 8(2): 373–380
    Pisano M A, Sommer M J, Taras L. 1992. Bioactivity of chitinolytic actinomycetes of marine origin. Applied Microbiology and Biotechnology, 36(4): 553–555
    Prudhomme J, McDaniel E, Ponts N, et al. 2008. Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One, 3(6): e2335. doi: 10.1371/journal.pone.0002335
    Qiu Danheng, Ruan Jisheng, Huang Ying. 2008. Selective isolation and rapid identification of members of the genus Micromonospora. Applied and Environmental Microbiology, 74(17): 5593–5597. doi: 10.1128/AEM.00303-08
    Rahman H, Austin B, Mitchell W J, et al. 2010. Novel anti-infective compounds from marine bacteria. Marine Drugs, 8(3): 498–518. doi: 10.3390/md8030498
    Ramesh S, Jayaprakashvel M, Mathivanan N. 2006. Microbial status in seawater and coastal sediments during pre- and post-tsunami periods in the Bay of Bengal, India. Marine Ecology, 27(3): 198–203. doi: 10.1111/mae.2006.27.issue-3
    Ramesh S, Mathivanan N. 2009. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology and Biotechnology, 25(12): 2103–2111. doi: 10.1007/s11274-009-0113-4
    Rashad F M, Fathy H M, El-Zayat A S, et al. 2015. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiological Research, 175: 34–47. doi: 10.1016/j.micres.2015.03.002
    Rath C M, Janto B, Earl J, et al. 2011. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chemical Biology, 6(11): 1244–1256. doi: 10.1021/cb200244t
    Ravikumar S, Gnanadesigan M, Saravanan A, et al. 2012. Antagonistic properties of seagrass associated Streptomyces sp. RAUACT-1: a source for anthraquinone rich compound. Asian Pacific Journal of Tropical Medicine, 5(11): 887–890. doi: 10.1016/S1995-7645(12)60165-5
    Reen F J, Gutiérrez-Barranquero J A, Dobson A D W, et al. 2015. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Marine Drugs, 13(5): 2924–2954. doi: 10.3390/md13052924
    Renner M K, Shen Y C, Cheng X C, et al. 1999. Cyclomarins A-C, new antiinflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). Journal of the American Chemical Society, 121(49): 11273–11276. doi: 10.1021/ja992482o
    Riedlinger J, Reicke A, Zähner H, et al. 2004. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. The Journal of Antibiotics, 57(4): 271–279. doi: 10.7164/antibiotics.57.271
    Riesenfeld C S, Schloss P D, Handelsman J. 2004. Metagenomics: genomic analysis of microbial communities. Annual Review of Genetics, 38: 525–552. doi: 10.1146/annurev.genet.38.072902.091216
    Romero F, Espliego F, Pérez Baz J, et al. 1997. Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation, and biological activities. The Journal of Antibiotics, 50(9): 734–737. doi: 10.7164/antibiotics.50.734
    Romero F, Fernández-Chimeno R I, de la Fuente J L, et al. 2012. Selection and taxonomic identification of carotenoid–producing marine actinomycetes. In: Barredo J L, ed. Microbial Carotenoids from Bacteria and Microalgae: Methods and Protocols. Totowa, NJ: Humana Press, 13–20
    Sato S, Iwata F, Yamada S, et al. 2011. Usabamycins A–C: new anthramycin-type analogues from a marine-derived actinomycete. Bioorganic & Medicinal Chemistry Letters, 21(23): 7099–7101
    Schneider K, Nachtigall J, Hänchen A, et al. 2009. Lipocarbazoles, secondary metabolites from Tsukamurella pseudospumae Acta 1857 with antioxidative activity. Journal of Natural Products, 72(10): 1768–1772. doi: 10.1021/np9002178
    Schumacher R W, Talmage S C, Miller S A, et al. 2003. Isolation and structure determination of an antimicrobial ester from a marine sediment-derived bacterium. Journal of Natural Products, 66(9): 1291–1293. doi: 10.1021/np020594e
    Sharma M, Dangi P, Choudhary M. 2014. Actinomycetes: source, identification, and their applications. International Journal of Current Microbiology and Applied Sciences, 3(2): 801–832
    Shin H J, Kim T S, Lee H S, et al. 2008. Streptopyrrolidine, an angiogenesis inhibitor from a marine-derived Streptomyces sp. KORDI-3973. Phytochemistry, 69(12): 2363–2366. doi: 10.1016/j.phytochem.2008.05.020
    Shin H J, Mondol M A M, Yu T K, et al. 2010. An angiogenesis inhibitor isolated from a marine-derived actinomycete, Nocardiopsis sp. 03N67. Phytochemistry Letters, 3(4): 194–197. doi: 10.1016/j.phytol.2010.07.005
    Shiomi K, Iinuma H, Naganawa H, et al. 1987. Biosynthesis of napyradiomycins. The Journal of Antibiotics, 40(12): 1740–1745. doi: 10.7164/antibiotics.40.1740
    Shiomi K, Nakamura H, Iinuma H, et al. 1986. Structures of new antibiotics napyradiomycins. The Journal of Antibiotics, 39(4): 494–501. doi: 10.7164/antibiotics.39.494
    Sithranga Boopathy N, Kathiresan K. 2010. Anticancer drugs from marine flora: an overview. Journal of Oncology, 2010: 214186
    Sivakumar K, Sahu M K, Thangaradjou T, et al. 2007. Research on marine actinobacteria in India. Indian Journal of Microbiology, 47(3): 186–196. doi: 10.1007/s12088-007-0039-1
    Socha A M, LaPlante K L, Rowley D C. 2006. New bisanthraquinone antibiotics and semi-synthetic derivatives with potent activity against clinical Staphylococcus aureus and Enterococcus faecium isolates. Bioorganic & Medicinal Chemistry, 14(24): 8446–8454
    Soria-Mercado I E, Prieto-Davo A, Jensen P R, et al. 2005. Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. Journal of Natural Products, 68(6): 904–910. doi: 10.1021/np058011z
    Srinivasan M C, Laxman R S, Deshpande M V. 1991. Physiology and nutritional aspects of actinomycetes: an overview. World Journal of Microbiology and Biotechnology, 7(2): 171–184. doi: 10.1007/BF00328987
    Stach J E M, Maldonado L A, Ward A C, et al. 2003. New primers for the class Actinobacteria: application to marine and terrestrial environments. Environmental Microbiology, 5(10): 828–841. doi: 10.1046/j.1462-2920.2003.00483.x
    Stach J E M, Maldonado L A, Ward A C, et al. 2004. Williamsia maris sp. nov., a novel actinomycete isolated from the sea of Japan. International Journal of Systematic and Evolutionary Microbiology, 54(1): 191–194. doi: 10.1099/ijs.0.02767-0
    Stamford T L M, Stamford N P, Coelho L C B B, et al. 2001. Production and characterization of a thermostable α-amylase from Nocardiopsis sp. endophyte of yam bean. Bioresource Technology, 76(2): 137–141. doi: 10.1016/S0960-8524(00)00089-4
    Sujatha P, Bapi Raju KV V S N, Ramana T. 2005. Studies on a new marine Streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiological Research, 160(2): 119–126. doi: 10.1016/j.micres.2004.10.006
    Sun Wei, Dai Shikun, Jiang Shumei, et al. 2010. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie van Leeuwenhoek, 98(1): 65–75. doi: 10.1007/s10482-010-9430-8
    Takizawa M, Colwell R R, Hill R T. 1993. Isolation and diversity of actinomycetes in the Chesapeake bay. Applied and Environmental Microbiology, 59(4): 997–1002
    Tamehiro N, Hosaka T, Xu Jun, et al. 2003. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Applied and Environmental Microbiology, 69(11): 6412–6417. doi: 10.1128/AEM.69.11.6412-6417.2003
    Thornburg C C, Zabriskie T M, McPhail K L. 2010. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?. Journal of Natural Products, 73(3): 489–499. doi: 10.1021/np900662k
    Trindade M, van Zyl L J, Navarro-Fernández J, et al. 2015. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Frontiers in Microbiology, 6: 890
    Uchiyama T, Miyazaki K. 2009. Functional metagenomics for enzyme discovery: challenges to efficient screening. Current Opinion in Biotechnology, 20(6): 616–622. doi: 10.1016/j.copbio.2009.09.010
    Udwary D W, Zeigler L, Asolkar R N, et al. 2007. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proceedings of the National Academy of Sciences of the United States of America, 104(25): 10376–10381. doi: 10.1073/pnas.0700962104
    ul Hassan S S, Anjum K, Abbas S Q, et al. 2017. Emerging biopharmaceuticals from marine actinobacteria. Environmental Toxicology and Pharmacology, 49: 34–47. doi: 10.1016/j.etap.2016.11.015
    van Lanen S G, Shen Ben. 2006. Microbial genomics for the improvement of natural product discovery. Current Opinion in Microbiology, 9(3): 252–260. doi: 10.1016/j.mib.2006.04.002
    Venter J C, Remington K, Heidelberg J F, et al. 2004. Environmental genome shotgun sequencing of the Sargasso sea. Science, 304(5667): 66–74. doi: 10.1126/science.1093857
    Vigal T, Gil J A, Daza A, et al. 1991. Cloning, characterization and expression of an α-amylase gene from Streptomyces griseus IMRU3570. Molecular and General Genetics MGG, 225(2): 278–288. doi: 10.1007/BF00269860
    Vijayakumar R, Murugesan S, Cholarajan A, et al. 2010. Larvicidal potentiality of marine actinomycetes isolated from Muthupet mangrove, Tamilnadu, India. International Journal of Microbiological Research, 1(3): 179–183
    Waksman S A. 1943. Production and activity of streptothricin. Journal of Bacteriology, 46(3): 299–310
    Waksman S A, Woodruff H B. 1940. Bacteriostatic and bactericidal substances produced by a soil actinomyces. Proceedings of the Society for Experimental Biology and Medicine, 45(2): 609–614. doi: 10.3181/00379727-45-11768
    Walsh C T, Fischbach M A. 2010. Natural products version 2.0: connecting genes to molecules. Journal of the American Chemical Society, 132(8): 2469–2493. doi: 10.1021/ja909118a
    Wawrik B, Kerkhof L, Zylstra G J, et al. 2005. Identification of unique type II polyketide synthase genes in soil. Applied and Environmental Microbiology, 71(5): 2232–2238. doi: 10.1128/AEM.71.5.2232-2238.2005
    Weber T. 2014. In silico tools for the analysis of antibiotic biosynthetic pathways. International Journal of Medical Microbiology, 304(3–4): 230–235
    Weber T, Charusanti P, Musiol-Kroll E M, et al. 2015. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends in Biotechnology, 33(1): 15–26. doi: 10.1016/j.tibtech.2014.10.009
    Wenzel S C, Müller R. 2009. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Natural Product Reports, 26(11): 1385–1407. doi: 10.1039/b817073h
    Williams P G, Buchanan G O, Feling R H, et al. 2005. New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica. The Journal of Organic Chemistry, 70(16): 6196–6203. doi: 10.1021/jo050511+
    Williams P G, Miller E D, Asolkar R N, et al. 2007. Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola. The Journal of Organic Chemistry, 72(14): 5025–5034. doi: 10.1021/jo061878x
    Wommack K E, Bhavsar J, Ravel J. 2008. Metagenomics: read length matters. Applied and Environmental Microbiology, 74(5): 1453–1463. doi: 10.1128/AEM.02181-07
    Xiao Jing, Luo Yingxue, Xie Shujie, et al. 2011. Serinicoccus profundi sp. nov., an actinomycete isolated fromdeep-sea sediment, and emended description of the genus Serinicoccus. International Journal of Systematic and Evolutionary Microbiology, 61(1): 16–19. doi: 10.1099/ijs.0.019976-0
    Xiong L, Li J, Kong F. 2004. Streptomyces sp. 173, an insecticidal micro-organism from marine. Letters in Applied Microbiology, 38(1): 32–37. doi: 10.1046/j.1472-765X.2003.01437.x
    Xu Ying, He Hongping, Schulz S, et al. 2010. Potent antifouling compounds produced by marine Streptomyces. Bioresource Technology, 101(4): 1331–1336. doi: 10.1016/j.biortech.2009.09.046
    You Jianlan, Xue Xiaoli, Cao Lixiang, et al. 2007. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Applied Microbiology and Biotechnology, 76(5): 1137–1144. doi: 10.1007/s00253-007-1074-x
    Zengler K, Toledo G, Rappé M, et al. 2002. Cultivating the uncultured. Proceedings of the National Academy of Sciences of the United States of America, 99(24): 15681–15686. doi: 10.1073/pnas.252630999
    Zengler K, Walcher M, Clark G, et al. 2005. High-throughput cultivation of microorganisms using microcapsules. Methods in Enzymology, 397: 124–130. doi: 10.1016/S0076-6879(05)97007-9
    Zhang Jinhua, Zhang Liping. 2011. Improvement of an isolation medium for actinomycetes. Modern Applied Science, 5(2): 124–127
    Zhang Haitao, Zhang Wei, Jin Yan, et al. 2008. A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie van Leeuwenhoek, 93(3): 241–248. doi: 10.1007/s10482-007-9196-9
    Zhou Meiying, Zheng Zhicheng. 1998. Identification of marine actinomycetes S-216 strain and its biosynthetic conditions of antifungal antibiotic. Journal of Xiamen University (Natural Science) (in Chinese), 37(1): 109–114
    Zotchev S, Haugan K, Sekurova O, et al. 2000. Identification of a gene cluster for antibacterial polyketide-derived antibiotic biosynthesis in the nystatin producer Streptomyces noursei ATCC 11455. Microbiology, 146(3): 611–619. doi: 10.1099/00221287-146-3-611
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (582) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return