Zhang Tiecheng, Wang Weiqiang, Xie Qiang, Chen Lingfang. Heat contribution of the Indonesian throughflow to the Indian Ocean[J]. Acta Oceanologica Sinica, 2019, 38(4): 72-79. doi: 10.1007/s13131-019-1414-6
Citation: Zhang Tiecheng, Wang Weiqiang, Xie Qiang, Chen Lingfang. Heat contribution of the Indonesian throughflow to the Indian Ocean[J]. Acta Oceanologica Sinica, 2019, 38(4): 72-79. doi: 10.1007/s13131-019-1414-6

Heat contribution of the Indonesian throughflow to the Indian Ocean

doi: 10.1007/s13131-019-1414-6
  • Received Date: 2018-02-08
  • Based on the high-resolution Eulerian fields of an ocean general circulation model simulation, the heat contribution of the Indonesian throughflow (ITF) to the Indian Ocean is estimated by Lagrangian tracing method. The heat transport of each particle of ITF waters is calculated by tracing temperature change along the trajectory until the particle exits the Indian Ocean. The simulation reveals that the ITF waters flow westward and branch near Madagascar, further showing the ITF waters are redistributed in both northern and southern Indian Ocean. Heat budget analysis indicates that the ITF waters gain 0.41 PW (Petawatts, 1015 W) in the northern Indian Ocean and lose 0.56 PW in the southern Indian Ocean, respectively. As a result, the ITF waters warm the whole Indian Ocean basin with only 0.15 PW, which shows an "insignificant" role of ITF on the Indian Ocean because of the heat exchange compensation between northern and southern Indian Ocean. Furthermore, the tracing pathways show that the ITF waters mainly flow out the Indian Ocean at both sides of the basin via Agulhas Current and Leeuwin Current. About 89% of the ITF waters leave along western boundary and the rest 11% along eastern boundary. Compared to seeding section, 0.10 PW and 0.05 PW are released to the Indian Ocean, respectively.
  • loading
  • Banks H T. 2000. Indonesian Throughflow in a coupled climate model and the sensitivity of the heat budget and deep overturning. Journal of Geophysical Research:Oceans, 105(C11):26135-26150, doi: 10.1029/1999JC000083
    Berglund S, Döös K, Nycander J. 2017. Lagrangian tracing of the water-mass transformations in the Atlantic Ocean. Tellus A:Dynamic Meteorology and Oceanography, 69(1):1306311, doi: 10.1080/16000870.2017.1306311
    Domingues C M, Maltrud M E, Wijffels S E, et al. 2007. Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 54(8-10):797-817
    Döös K, Engqvist A. 2007. Assessment of water exchange between a discharge region and the open sea:a comparison of different methodological concepts. Estuarine, Coastal and Shelf Science, 74(4):709-721, doi: 10.1016/j.ecss.2007.05.022
    Döös K, Kjellsson J, Jönsson B. 2013. TRACMASS-A Lagrangian trajectory model. In:Soomere T, Quak E, eds. Preventive Methods for Coastal Protection. London:Springer, 225-249
    Döös K, Nilsson J, Nycander J, et al. 2012. The world ocean thermohaline circulation. Journal of Physical Oceanography, 42(9):1445-1460, doi: 10.1175/JPO-D-11-0163.1
    Godfrey J S. 1996. The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere:A review. Journal of Geophysical Research:Oceans, 101(C5):12217-12237, doi: 10.1029/95JC03860
    Godfrey J S, Hu Ruijin, Schiller A, et al. 2007. Explorations of the annual mean heat budget of the tropical Indian Ocean. Part I:studies with an idealized model. Journal of Climate, 20(13):3210-3228, doi: 10.1175/JCLI4157.1
    Gordon A L. 1986. Interocean exchange of thermocline water. Journal of Geophysical Research:Oceans, 91(C4):5037-5046, doi: 10.1029/JC091iC04p05037
    Gordon A L. 2005. Oceanography of the Indonesian seas and their throughflow. Oceanography, 18(4):14-27, doi: 10.5670/oceanog
    Gordon A L, Sprintall J, Van Aken H M, et al. 2010. The Indonesian Throughflow during 2004-2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2):115-128, doi: 10.1016/j.dynatmoce.2009.12.002
    Haines M A, Fine R A, Luther M E, et al. 1999. Particle trajectories in an Indian Ocean model and sensitivity to seasonal forcing. Journal of Physical Oceanography, 29(4):584-598, doi: 10.1175/1520-0485(1999)029<0584:PTIAIO>2.0.CO;2
    Hu Ruijin, Godfrey J S. 2007. Explorations of the annual mean heat budget of the tropical Indian Ocean. Part Ⅱ:studies with a simplified ocean general circulation model. Journal of Climate, 20(13):3229-3248, doi: 10.1175/JCLI4158.1
    Kajtar J B, Santoso A, England M H, et al. 2015. Indo-Pacific climate interactions in the absence of an Indonesian Throughflow. Journal of Climate, 28(13):5017-5029, doi: 10.1175/JCLI-D-14-00114.1
    Koch-Larrouy A, Madec G, Blanke B, et al. 2008. Water mass transformation along the Indonesian Throughflow in an OGCM. Ocean Dynamics, 58(3-4):289-309
    Lee T, Awaji T, Balmaseda M, et al. 2010. Consistency and fidelity of Indonesian-Throughflow total volume transport estimated by 14 ocean data assimilation products. Dynamics of Atmospheres and Oceans, 50(2):201-223, doi: 10.1016/j.dynatmoce.2009.12.004
    Lee T, Fukumori I, Menemenlis D, et al. 2002. Effects of the Indonesian Throughflow on the pacific and Indian oceans. Journal of Physical Oceanography, 32(5):1404-1429, doi: 10.1175/1520-0485(2002)032<1404:EOTITO>2.0.CO;2
    Liang Xinfeng, Yu Lisan. 2016. Variations of the global net air-sea heat flux during the "hiatus" period (2001-10). Journal of Climate, 29(10):3647-3660, doi: 10.1175/JCLI-D-15-0626.1
    Lumpkin R, Speer K. 2007. Global ocean meridional overturning. Journal of Physical Oceanography, 37(10):2550-2562, doi: 10.1175/JPO3130.1
    Macdonald A M, Baringer M O. 2013. Ocean heat transport. In:Siedler G, Griffies S, Gould J, eds. Ocean Circulation and Climate:A 21st Century Perspective. 2nd ed. Oxford:Academic Press, 759-785
    Masumoto Y. 2010. Sharing the results of a high-resolution ocean general circulation model under a multi-discipline framework-a review of OFES activities. Ocean Dynamics, 60(3):633-652, doi: 10.1007/s10236-010-0297-z
    Masumoto Y, Morioka Y, Sasaki H. 2008. High-resolution Indian ocean simulations-recent advances and issues from OFES. In:Hecht M W, Hasumi H, eds. Ocean Modeling in an Eddying Regime. Washington, DC:AGU, 199-212
    Masumoto Y, Sasaki H, Kagimoto T, et al. 2004. A fifty-year eddy-resolving simulation of the world ocean-Preliminary outcomes of OFES (OGCM for the Earth Simulator). Journal of the Earth Simulator, 1:35-56
    McCreary J P, Miyama T, Furue R, et al. 2007. Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans. Progress in Oceanography, 75(1):70-114, doi: 10.1016/j.pocean.2007.05.004
    Metzger E J, Hurlburt H E, Xu X, et al. 2010. Simulated and observed circulation in the Indonesian Seas:1/12° global HYCOM and the INSTANT observations. Dynamics of Atmospheres and Oceans, 50(2):275-300, doi: 10.1016/j.dynatmoce.2010.04.002
    Miyama T, McCreary J P, Jensen T G, et al. 2003. Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 50(12-13):2023-2047
    Schott F A, Dengler M, Schoenefeldt R. 2002. The shallow overturning circulation of the Indian Ocean. Progress in Oceanography, 53(1):57-103, doi: 10.1016/S0079-6611(02)00039-3
    Sebille E, Sprintall J, Schwarzkopf F U, et al. 2014. Pacific-to-Indian ocean connectivity:Tasman leakage, Indonesian throughflow, and the role of ENSO. Journal of Geophysical Research:Oceans, 119(2):1365-1382, doi: 10.1002/2013JC009525
    Song Q, Gordon A L, Visbeck M. 2004. Spreading of the Indonesian throughflow in the Indian Ocean. Journal of Physical Oceanography, 34(4):772-792, doi:10.1175/1520-0485渨?‰?椴温‰堳椴愦湬杴稻攰??圲攺汓汏敔牉?剉…??※有??????渲渼畢慲氾??獮敧愠獑潩湡慮氬??慥湣摣?楩渠瑇攠牁愬渠湒畯慳污?癩愠牁椠慊戮椠氲椰琰礷?漠晔?慥椠牲?獬敥愠?桦攠慴瑨?映汉畮硤敯獮?楳湩?瑮栠敔??湯摵楧慨湦?佯捷攠慩湮???潥甠牉湮慤汯?潐晡??汦楩浣愠瑣敬???ぴ?ㄠ??????ど???べ???搠潴楨?ㄠぇ???????????ㄠ?????扴牥?婭楯此慥???????湮条汬愠湯摦??????却楥樬瀠′地?倱??呼??社??吲栴攵?漬挠敤慯湩?挱椰爮挱由氷愵琯楊潃湌?椴渱″琳栮攱爼浢潲栾慓汰楲湩敮?捡潬潬爠摊椬渠慇瑯敲獤???潁甠牌測愠汋?潣晨?偌桡祲獲楯捵慹氠?伬挠敥慴渠潡杬爮愠瀲栰礱?????????つ???????搠潳楥??????????偩佲??????ど??????扣牯?pled ocean-climate system. Nature Geoscience, 7(7):487-492, doi:10.1038/ngeo2188
    Sprintall J, Wijffels S, Gordon A L, et al. 2004. INSTANT:A new international array to measure the Indonesian Throughflow. EOS, Transactions American Geophysical Union, 85(39):369-376
    Talley L D. 2003. Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography, 33(3):530-560, doi: 10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2
    Talley L D. 2008. Freshwater transport estimates and the global overturning circulation:Shallow, deep and throughflow components. Progress in Oceanography, 78(4):257-303, doi: 10.1016/j.pocean.2008.05.001
    Valsala V K, Ikeda M. 2007. Pathways and effects of the Indonesian Throughflow water in the Indian Ocean using particle trajectory and tracers in an OGCM. Journal of Climate, 20(13):2994-3017, doi: 10.1175/JCLI4167.1
    Vranes K, Gordon A L, Ffield A. 2002. The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 49(7-8):1391-1410
    Wajsowicz R. 2002. Air-sea interaction over the Indian Ocean due to variations in the Indonesian Throughflow. Climate Dynamics, 18(5):437-453, doi: 10.1007/s00382-001-0187-7
    Wang Weiqiang, Köhl A, Stammer D. 2010. Estimates of global ocean volume transports during 1960 through 2001. Geophysical Research Letters, 37(15):L15601
    Wang Weiqiang, Köhl A, Stammer D. 2012. The deep meridional overturning circulation in the Indian Ocean inferred from the GECCO synthesis. Dynamics of Atmospheres and Oceans, 58:44-61, doi: 10.1016/j.dynatmoce.2012.08.001
    Yu Lisa
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (567) PDF downloads(311) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return