Shoujin Liu, Jian Lin, Zhiyuan Zhou, Fan Zhang. Large along-axis variations in magma supply and tectonism of the Southeast Indian Ridge near the Australian-Antarctic Discordance[J]. Acta Oceanologica Sinica, 2020, 39(1): 118-129. doi: 10.1007/s13131-019-1518-z
Citation: Shoujin Liu, Jian Lin, Zhiyuan Zhou, Fan Zhang. Large along-axis variations in magma supply and tectonism of the Southeast Indian Ridge near the Australian-Antarctic Discordance[J]. Acta Oceanologica Sinica, 2020, 39(1): 118-129. doi: 10.1007/s13131-019-1518-z

Large along-axis variations in magma supply and tectonism of the Southeast Indian Ridge near the Australian-Antarctic Discordance

doi: 10.1007/s13131-019-1518-z
Funds:  The National Key R&D Program of China under contract Nos 2018YFC0310105 and 2018YFC0309800; the China Ocean Mineral Resources R&D Association under contract No. DY135-S2-1-04; the National Natural Science Foundation of China under contract Nos 41890813, 91628301, 41976066, 41706056, 41976064, 91858207 and U1606401; the Chinese Academy of Sciences under contract Nos Y4SL021001, QYZDY-SSW-DQC005 and 133244KYSB20180029; the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0205.
More Information
  • Corresponding author: E-mail: zyzhou@scsio.ac.cn
  • Received Date: 2018-10-08
  • Accepted Date: 2018-11-23
  • Available Online: 2020-04-21
  • Publish Date: 2020-01-20
  • We analyzed seafloor morphology and geophysical anomalies of the Southeast Indian Ridge (SEIR) to reveal the remarkable changes in magma supply along this intermediate fast-spreading ridge. We found systematic differences of the Australian-Antarctic Discordance (AAD) from adjacent ridge segments with the residual mantle Bouguer gravity anomaly (RMBA) being more positive, seafloor being deeper, morphology being more chaotic, M factors being smaller at the AAD. These systematic anomalies, as well as the observed Na8.0 being greater and Fe8.0 being smaller at AAD, suggest relatively starved magma supply and relatively thin crust within the AAD. Comparing to the adjacent ridges segments, the calculated average map-view M factors are relatively small for the AAD, where several Oceanic Core Complexes (OCCs) develop. Close to 30 OCCs were found to be distributed asymmetrically along the SEIR with 60% of OCCs at the northern flank. The OCCs are concentrated mainly in Segments B3 and B4 within the AAD at ~124°–126°E, as well as at the eastern end of Zone C at ~115°E. The relatively small map-view M factors within the AAD indicate stronger tectonism than the adjacent SEIR segments. The interaction between the westward migrating Pacific mantle and the relatively cold mantle beneath the AAD may have caused a reduction in magma supply, leading to the development of abundant OCCs.
  • †These authors contributed equally to this work.
  • loading
  • [1]
    Anderson R N, Spariosu D J, Weissel J K, et al. 1980. The interrelation between variations in magnetic anomaly amplitudes and basalt magnetization and chemistry along the Southeast Indian Ridge. Journal of Geophysical Research: Solid Earth, 185(B7): 3883–3898. doi: 10.1029/JB085iB07p03883
    [2]
    Behn M D, Ito G. 2008. Magmatic and tectonic extension at mid-ocean ridges: 1. Controls on fault characteristics. Geochemistry, Geophysics, Geosystems, 9(8): Q08O10. doi: 10.1029/2008GC001965
    [3]
    Buck W R, Lavier L L, Poliakov A N B. 2005. Modes of faulting at mid-ocean ridges. Nature, 434(7034): 719–723. doi: 10.1038/nature03358
    [4]
    Cann J R, Blackman D K, Smith D K, et al. 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385(6612): 329–332
    [5]
    Christie D M, West B P, Pyle D G, et al. 1998. Chaotic topography, mantle flow and mantle migration in the Australian-Antarctic discordance. Nature, 394(6694): 637–644. doi: 10.1038/29226
    [6]
    Ciazela J, Koepke J, Dick H J B, et al. 2015. Mantle rock exposures at oceanic core complexes along mid-ocean ridges. Geologos, 21(4): 207–231. doi: 10.1515/logos-2015-0017
    [7]
    Cundall P A. 1989. Numerical experiments on localization in frictional material. Ingenieur-Archiv, 58(2): 148–159. doi: 10.1007/bf00538368
    [8]
    Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128
    [9]
    Escartín J, Mével C, Macleod C J, et al. 2003. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45’N. Geochemistry, Geophysics, Geosystems, 4(8): 1067. doi: 10.1029/2002GC000472
    [10]
    Escartín J, Smith D K, Cann J R, et al. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455(7214): 790–794. doi: 10.1038/nature07333
    [11]
    Gurnis M, Müller R D, Moresi L. 1998. Cretaceous vertical motion of Australia and the Australian Antarctic discordance. Science, 279(5356): 1499–1504. doi: 10.1126/science.279.5356.1499
    [12]
    Gurnis M, Müeller R D. 2003. Origin of the Australian-Antarctic discordance from an ancient slab and mantle wedge. Geological Society of America Special Papers, 372: 417–429
    [13]
    Hayes D E. 1976. Nature and implications of asymmetric sea-floor spreading-“different rates for different plates”. GSA Bulletin, 87(7): 994–1002. doi: 10.1130/0016-7606(1976)87<994:NAIOAS>2.0.CO;2
    [14]
    Hayes D E. 1988. Age-depth relationships and depth anomalies in the Southeast Indian Ocean and south Atlantic Ocean. Journal of Geophysical Research: Solid Earth, 93(B4): 2937–2954. doi: 10.1029/JB093iB04p02937
    [15]
    Hayes D E, Conolly J R. 1972. Morphology of the Southeast Indian Ocean. In: Hayes D E, ed. Antarctic Oceanology II: The Australian-New Zealand Sector. Washington D C: Wiley, 125–145,
    [16]
    Klein E M, Langmuir C H. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research: Solid Earth, 92(B8): 8089–8115. doi: 10.1029/JB092iB08p08089
    [17]
    Klein E M, Langmuir C H, Staudigel H. 1991. Geochemistry of basalts from the Southeast Indian Ridge, 115°E-138°E. Journal of Geophysical Research: Solid Earth, 96(B2): 2089–2107. doi: 10.1029/90JB01384
    [18]
    Klein E M, Langmuir C H, Zindler A, et al. 1988. Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance. Nature, 333(6174): 623–629. doi: 10.1038/333623a0
    [19]
    Kojima Y, Shinohara M, Mochizuki K, et al. 2003. Seismic velocity structure in the Australian-Antarctic Discordance, Segment B4 revealed by airgun-OBS experiment. In: American Geophysical Union, Fall Meeting 2003, S21F-0396
    [20]
    Kuo Baiyuan, Forsyth D W. 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5°S: Upwelling centers and variations in crustal thickness. Marine Geophysical Researches, 10(3–4): 205–232. doi: 10.1007/BF00310065
    [21]
    Lavier L L, Buck W R. 2002. Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting. Journal of Geophysical Research: Solid Earth, 107(B6): 2122. doi: 10.1029/2001JB000513
    [22]
    Lavier L L, Buck W R, Poliakov A N B. 2000. Factors controlling normal fault offset in an ideal brittle layer. Journal of Geophysical Research: Solid Earth, 105(B10): 23431–23442. doi: 10.1029/2000JB900108
    [23]
    Lin J, Purdy G M, Schouten H, et al. 1990. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature, 344(6267): 627–632. doi: 10.1038/344627a0
    [24]
    Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. doi: 10.1029/2007GC001743
    [25]
    Macdonald K C. 1990. A slow but restless ridge. Nature, 348(6297): 108–109. doi: 10.1038/348108a0
    [26]
    MacLeod C J, Searle R C, Murton B J, et al. 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters, 287(3–4): 333–344. doi: 10.1016/j.jpgl.2009.08.016
    [27]
    Mahoney J J, Graham D W, Christie D M, et al. 2002. Between a hotspot and a cold spot: Isotopic variation in the Southeast Indian Ridge asthenosphere, 86°E–118°E. Journal of Petrology, 43(7): 1155–1176. doi: 10.1093/petrology/43.7.1155
    [28]
    Marks K M, Vogt P R, Hall S A. 1990. Residual depth anomalies and the origin of the Australian-Antarctic Discordance zone. Journal of Geophysical Research: Solid Earth, 95(B11): 17325–17337. doi: 10.1029/JB095iB11p1732
    [29]
    Ohara Y, Yoshida T, Kato Y, et al. 2001. Giant megamullion in the Parece Vela backarc basin. Marine Geophysical Researches, 22(1): 47–61. doi: 10.1023/A:1004818225642
    [30]
    Okino K, Matsuda K, Christie D M, et al. 2004. Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance. Geochemistry, Geophysics, Geosystems, 5(12): Q12012. doi: 10.1029/2004GC000793
    [31]
    Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39(4): 526–536. doi: 10.1190/1.1440444
    [32]
    Olive J A, Behn M D, Mittelstaedt E, et al. 2016. The role of elasticity in simulating long-term tectonic extension. Geophysical Journal International, 205(2): 728–743. doi: 10.1093/gji/ggw044
    [33]
    Olive J A, Behn M D, Tucholke B E. 2010. The structure of oceanic core complexes controlled by the depth distribution of magma emplacement. Nature Geoscience, 3(7): 491–495. doi: 10.1038/ngeo888
    [34]
    Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4): 447–455. doi: 10.1111/j.1365-246X.1973.tb06513.x
    [35]
    Pyle D G, Christie D M, Mahoney J J. 1992. Resolving an isotopic boundary within the Australian-Antarctic Discordance. Earth and Planetary Science Letters, 112(1–4): 161–178. doi: 10.1016/0012-821X(92)90014-M
    [36]
    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
    [37]
    Shaw W J, Lin Jian. 1996. Models of ocean ridge lithospheric deformation: Dependence on crustal thickness, spreading rate, and segmentation. Journal of Geophysical Research: Solid Earth, 101(B8): 17977–17993. doi: 10.1029/96JB00949
    [38]
    Smith D. 2013. Mantle spread across the sea floor. Nature Geoscience, 6(4): 247–248. doi: 10.1038/ngeo1786
    [39]
    Tucholke B E, Behn M D, Buck W R, et al. 2008. Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology, 36(6): 455–458. doi: 10.1130/G24639A.1
    [40]
    Tucholke B E, Lin Jian. 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research: Solid Earth, 99(B6): 11937–11958. doi: 10.1029/94JB00338
    [41]
    Tucholke B E, Lin Jian, Kleinrock M C. 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 103(B5): 9857–9866. doi: 10.1029/98JB00167
    [42]
    Vogt P R, Cherkis N Z, Morgan G A. 1983. Project Investigator-I: Evolution of the Australian-Antarctic Discordance deduced from a detailed aeromagnetic study. In: Oliver R L, James P R, Jago J B, eds. Antarctic Earth Science: 4th International Symposium. Camberra: Cambridge University Press, 608–613
    [43]
    Wang Tingting, Lin Jian, Tucholke B E, et al. 2011. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochemistry, Geophysics, Geosystems, 12(3): Q0AE02. doi: 10.1029/2010GC003402
    [44]
    Weissel J K, Hayes D E. 1971. Asymmetric seafloor spreading south of Australia. Nature, 231(5304): 518–522. doi: 10.1038/231518a0
    [45]
    Zhou Zhiyuan, Lin Jian, Behn M, Olive J A. 2015. Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42(11): 4309–4317. doi: doi:10.1002/2015GL063917
    [46]
    Zhou Zhiyuan, Lin Jian. 2018. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench. Tectonophysics, 734–735: 59–68. doi: 10.1016/j.tecto.2018.04.008
    [47]
    Zhou Zhiyuan, Lin Jian, Zhang Fan. 2018. Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening. Acta Oceanologica Sinica, 37(11): 53–60. doi: 10.1007/s13131-0181146-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (373) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return