Wei Cui, Wei Wang, Jie Zhang, Jungang Yang. Identification and census statistics of multicore eddies based on sea surface height data in global oceans[J]. Acta Oceanologica Sinica, 2020, 39(1): 41-51. doi: 10.1007/s13131-019-1519-y
Citation: Wei Cui, Wei Wang, Jie Zhang, Jungang Yang. Identification and census statistics of multicore eddies based on sea surface height data in global oceans[J]. Acta Oceanologica Sinica, 2020, 39(1): 41-51. doi: 10.1007/s13131-019-1519-y

Identification and census statistics of multicore eddies based on sea surface height data in global oceans

doi: 10.1007/s13131-019-1519-y
Funds:  The National Key Reasearch and Development Program of China under contract No. 2016YFC1401800; the National Natural Science Foundation of China under contract No. 41576176; the National Programme on Global Change and Air-Sea Interaction; Dragon 4 Project under contract No. 32292 .
More Information
  • Corresponding author: Jungang Yang (yangjg@fio.org.cn)
  • Received Date: 2018-07-28
  • Accepted Date: 2018-11-05
  • Available Online: 2020-04-21
  • Publish Date: 2020-01-20
  • This study produced a statistical analysis of multicore eddy structures based on 23 years' altimetry data in global oceans. Multicore structures were identified using a threshold-free closed-contour algorithm of sea surface height, which was improved for this study in respect of certain technical details. Meanwhile a more accurate definition of eddy boundary was used to estimate eddy scale. Generally, multicore structures, which have two or more closed eddies of the same polarity within their boundaries, represent an important transitional stage in their lives during which the component eddies might experience splitting or merging. In comparison with global eddies, the lifetimes and propagation distances of multicore eddies were found to be much smaller because of their inherent structural instability. However, at the same latitude, the spatial scale of multicore eddies was found larger than that of single-core eddies, i.e., the eddy area could be at least twice as large. Multicore eddies were found to exhibit some features similar to global eddies. For example, multicore eddies tend to occur in the Antarctic Circumpolar Current, some western boundary currents, and mid-latitude regions around 25°N/S, the majority (70%) of eddies propagate westward while only 30% propagate eastward, and large-amplitude eddies are restricted mainly to reasonably confined regions of highly unstable currents.
  • loading
  • [1]
    Abernathey R P, Marshall J. 2013. Global surface eddy diffusivities derived from satellite altimetry. Journal of Geophysical Research: Oceans, 118(2): 901–916. doi: 10.1002/jgrc.20066
    [2]
    Adams D K, McGillicuddy D J Jr, Zamudio L, et al. 2011. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science, 332(6029): 580–583. doi: 10.1126/science.1201066
    [3]
    AVISO. 2017. Statistical analysis on the mesoscale eddy trajectory atlas product. https://www.aviso.altimetry.fr/fileadmin/documents/data/products/value-added/aviso_validation_report_eddy_tracking.pdf (2017,06)
    [4]
    Birol F, Morrow R. 2001. Source of the baroclinic waves in the southeast Indian Ocean. Journal of Geophysical Research: Oceans, 106(C5): 9145–9160. doi: 10.1029/2000JC900044
    [5]
    Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119. doi: 10.1016/j.pocean.2008.10.013
    [6]
    Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025. doi: 10.1029/2011JC007134
    [7]
    Chaigneau A, Pizarro O. 2005. Eddy characteristics in the eastern South Pacific. Journal of Geophysical Research: Oceans, 110(C6): C06005
    [8]
    Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    [9]
    Chelton D B, Schlax M G. 1996. Global observations of oceanic Rossby waves. Science, 272(5259): 234–238. doi: 10.1126/science.272.5259.234
    [10]
    Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [11]
    Cui Wei, Yang Jungang, Ma Yi. 2016. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22-year altimetry data. Acta Oceanologica Sinica, 35(11): 16–27. doi: 10.1007/s13131-016-0945-3
    [12]
    Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294. doi: 10.1038/ncomms4294
    [13]
    Dufau C, Labroue S, Dibarboure G, et al. 2013. Reducing altimetry small-scales errors to access (sub) mesoscale dynamics. In: Proceedings of Ocean Surface Topography Science Team (OSTST) Meeting. Boulder, CO: UCAR
    [14]
    Dufau C, Orsztynowicz M, Dibarboure G, et al. 2016. Mesoscale resolution capability of altimetry: Present and future. Journal of Geophysical Research: Oceans, 121(7): 4910–4927. doi: doi:10.1002/2015JC010904
    [15]
    Feng M, Wijffels S. 2002. Intraseasonal variability in the South Equatorial current of the East Indian Ocean. Journal of Physical Oceanography, 32(1): 265–277. doi: 10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2
    [16]
    Flierl G R. 1981. Particle motions in large-amplitude wave fields. Geophysical & Astrophysical Fluid Dynamics, 18(1–2): 39–74
    [17]
    Fu L L. 2009. Pattern and velocity of propagation of the global ocean eddy variability. Journal of Geophysical Research: Oceans, 114(C11): C11017. doi: 10.1029/2009JC005349
    [18]
    Fu L L, Chelton D B, Le Traon P Y, et al. 2010. Eddy dynamics from satellite altimetry. Oceanography, 23(4): 14–25. doi: 10.5670/oceanog.2010.02
    [19]
    Gaube P. 2013. Satellite observations of the influence of mesoscale ocean eddies on near-surface temperature, phytoplankton and surface stress[dissertation]. Oregon: Oregon State University
    [20]
    Henson S A, Thomas A C. 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research Part I: Oceanographic Research Papers, 55(2): 163–176. doi: 10.1016/j.dsr.2007.11.005
    [21]
    Hughes C W, Jones M S, Carnochan S. 1998. Use of transient features to identify eastward currents in the Southern Ocean. Journal of Geophysical Research: Oceans, 103(C2): 2929–2943. doi: 10.1029/97JC02442
    [22]
    Li Qiuyang, Sun Liang. 2015. Technical Note: watershed strategy for oceanic mesoscale eddy splitting. Ocean Science, 11(2): 269–273. doi: 10.5194/os-11-269-2015
    [23]
    Maltrud M E, McClean J L. 2005. An eddy resolving global 1/10° ocean simulation. Ocean Modelling, 8(1–2): 31–54. doi: 10.1016/j.ocemod.2003.12.001
    [24]
    Nencioli F, Dong C M, Dickey T, et al. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579. doi: 10.1175/2009JTECHO725.1
    [25]
    Overman II E A, Zabusky N J. 1982. Evolution and merger of isolated vortex structures. The Physics of Fluids, 25(8): 1297–1305. doi: 10.1063/1.863907
    [26]
    Palacios D M, Bograd S J. 2005. A census of Tehuantepec and Papagayo eddies in the northeastern tropical Pacific. Geophysical Research Letters, 32(23): L23606. doi: 10.1029/2005GL024324
    [27]
    Prants S V, Budyansky M V, Ponomarev V I, et al. 2011. Lagrangian study of transport and mixing in a mesoscale eddy street. Ocean Modelling, 38(1–2): 114–125. doi: 10.1016/j.ocemod.2011.02.008
    [28]
    Robinson I S. 2010. Mesoscale ocean features: eddies. In: Robinson I S, ed. Discovering the Ocean from Space. Berlin Heidelberg: Springer, 69–114
    [29]
    Roemmich D, Gilson J. 2001. Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability?. Journal of Physical Oceanography, 31(3): 675–687. doi: 10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2
    [30]
    Samelson R M. 1992. Fluid exchange across a meandering jet. Journal of Physical Oceanography, 22(4): 431–444. doi: 10.1175/1520-0485(1992)022<0431:FEAAMJ>2.0.CO;2
    [31]
    Schlax M G, Chelton D B. 2016. The “Growing Method” of eddy identification and tracking in two and three dimensions[dissertation]. Oregon: College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, 2016
    [32]
    Thompson A F, Heywood K J, Schmidtko S, et al. 2014. Eddy transport as a key component of the Antarctic overturning circulation. Nature Geoscience, 7(12): 879–884. doi: 10.1038/ngeo2289
    [33]
    Trieling R R, Fuentes O V, van Heijst G J F. 2005. Interaction of two unequal corotating vortices. Physics of Fluids, 17(8): 087103. doi: 10.1063/1.1993887
    [34]
    Wang Zifi, Li Qiuyang, Sun Liang, et al. 2015. The most typical shape of oceanic mesoscale eddies from global satellite sea level observations. Frontiers of Earth Science, 9(2): 202–208. doi: 10.1007/s11707-014-0478-z
    [35]
    Willett C S, Leben R R, Lavín M F. 2006. Eddies and tropical instability waves in the eastern tropical Pacific: a review. Progress in Oceanography, 69(2–4): 218–238. doi: 10.1016/j.pocean.2006.03.010
    [36]
    Xu Chi, Shang Xiaodong, Huang Ruixin. 2011. Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data. Ocean Dynamics, 61(4): 525–541. doi: 10.1007/s10236-011-0377-8
    [37]
    Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    [38]
    Yi Jiawei, Du Y, He Z, et al. 2014. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Science, 10(1): 39–48. doi: 10.5194/os-10-39-2014
    [39]
    Yi Jiawei, Du Yunyan, Zhou Chenghu, et al. 2015. Automatic identification of oceanic multieddy structures from satellite altimeter datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4): 1555–1563. doi: 10.1109/JSTARS.2015.2417876
    [40]
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (462) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return