Jingling Yang, Shaocai Jiang, Junshan Wu, Lingling Xie, Shuwen Zhang, Peng Bai. Effects of wave-current interaction on the waves, cold-water mass and transport of diluted water in the Beibu Gulf[J]. Acta Oceanologica Sinica, 2020, 39(1): 25-40. doi: 10.1007/s13131-019-1529-9
Citation: Jingling Yang, Shaocai Jiang, Junshan Wu, Lingling Xie, Shuwen Zhang, Peng Bai. Effects of wave-current interaction on the waves, cold-water mass and transport of diluted water in the Beibu Gulf[J]. Acta Oceanologica Sinica, 2020, 39(1): 25-40. doi: 10.1007/s13131-019-1529-9

Effects of wave-current interaction on the waves, cold-water mass and transport of diluted water in the Beibu Gulf

doi: 10.1007/s13131-019-1529-9
Funds:  The Program for Scientific Research Start-up Funds of Guangdong Ocean University under contract No. 101302/R18001; the Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) under contract No. ZJW-2019-08; the National Key Research and Development Program of China under contract No. 2016YFC1401403; the National Natural Science Foundation of China under contract Nos 41476009 and 41776034.
More Information
  • Corresponding author: E-mail: baip@gdou.edu.cn
  • Received Date: 2018-12-19
  • Accepted Date: 2019-01-17
  • Available Online: 2020-04-21
  • Publish Date: 2020-01-20
  • Wave-current interaction and its effects on the hydrodynamic environment in the Beibu Gulf (BG) have been investigated via employing the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. The model could simulate reasonable hydrodynamics in the BG when validated by various observations. Vigorous tidal currents refract the waves efficiently and make the seas off the west coast of Hainan Island be the hot spot where currents modulate the significant wave height dramatically. During summer, wave-enhanced bottom stress could weaken the near-shore component of the gulf-scale cyclonic-circulation in the BG remarkably, inducing two major corresponding adjustments: Model results reveal that the deep-layer cold water from the southern BG makes critical contribution to maintaining the cold-water mass in the northern BG Basin. However, the weakened background circulation leads to less cold water transported from the southern gulf to the northern gulf, which finally triggers a 0.2°C warming in the cold-water mass area; In the top areas of the BG, the suppressed background circulation reduces the transport of the diluted water to the central gulf. Therefore, more freshwater could be trapped locally, which then triggers lower sea surface salinity (SSS) in the near-field and higher SSS in the far-field.
  • loading
  • [1]
    Beardsley R C, Chen Changsheng, Xu Qichun. 2013. Coastal flooding in Scituate (MA): a FVCOM study of the 27 December 2010 nor’easter. Journal of Geophysical Research: Oceans, 118(11): 6030–6045. doi: 10.1002/2013JC008862
    [2]
    Bolaños R, Brown J M, Souza A J. 2014. Wave-current interactions in a tide dominated estuary. Continental Shelf Research, 87: 109–123. doi: 10.1016/j.csr.2014.05.009
    [3]
    Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4): 7649–7666
    [4]
    Carniel S, Warner J C, Chiggiato J, et al. 2009. Investigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind-storm event. Ocean Modelling, 30(2–3): 225–239. doi: 10.1016/j.ocemod.2009.07.001
    [5]
    Chen Changlin, Li Peiliang, Shi Maochong, et al. 2009. Numerical study of the tides and residual currents in the Qiongzhou Strait. Chinese Journal of Oceanology and Limnology, 27(4): 931–942. doi: 10.1007/s00343-009-9193-0
    [6]
    Chen Zhenhua, Qiao Fangli, Xia Changshui, et al. 2015. The numerical investigation of seasonal variation of the cold water mass in the Beibu Gulf and its mechanisms. Acta Oceanologica Sinica, 34(1): 44–54. doi: 10.1007/s13131-015-0595-x
    [7]
    Ding Yang, Chen Changsheng, Beardsley R C, et al. 2013. Observational and model studies of the circulation in the Gulf of Tonkin, South China Sea. Journal of Geophysical Research: Oceans, 118(12): 6495–6510. doi: 10.1002/2013JC009455
    [8]
    Durrant T H, Greenslade D J M, Simmonds I. 2009. Validation of Jason-1 and Envisat remotely sensed wave heights. Journal of Atmospheric and Oceanic Technology, 26(1): 123–134. doi: 10.1175/2008JTECHO598.1
    [9]
    Fan Yalin, Ginis I, Hara T, et al. 2009. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. Journal of Physical Oceanography, 39(9): 2097–2116. doi: 10.1175/2009JPO4224.1
    [10]
    Gao Jingsong, Chen Bo, Shi Maochong. 2015. Summer circulation structure and formation mechanism in the Beibu Gulf. Science China Earth Sciences, 58(2): 286–299. doi: 10.1007/s11430-014-4916-2
    [11]
    Gao Jingsong, Shi Maochong, Chen Bo, et al. 2014. Responses of the circulation and water mass in the Beibu Gulf to the seasonal forcing regimes. Acta Oceanologica Sinica, 33(7): 1–11. doi: 10.1007/s13131-014-0506-6
    [12]
    Gao Jingsong, Xue Huijie, Chai Fei, et al. 2013. Modeling the circulation in the gulf of Tonkin, South China Sea. Ocean Dynamics, 63(8): 979–993. doi: 10.1007/s10236-013-0636-y
    [13]
    Gong Wenping, Lin Zhongyuan, Chen Yunzhen, et al. 2018. Effect of waves on the dispersal of the Pearl River plume in winter. Journal of Marine Systems, 186: 47–67. doi: 10.1016/j.jmarsys.2018.05.003
    [14]
    Haidvogel D B, Arango H G, Hedstrom K, et al. 2000. Model evaluation experiments in the North Atlantic basin: simulations in nonlinear terrain-following coordinates. Dynamics of Atmospheres and Oceans, 32(3–4): 239–281. doi: 10.1016/S0377-0265(00)00049-X
    [15]
    Hu Jianyu, Kawamura H, Tang Danling. 2003. Tidal front around the Hainan Island, northwest of the South China Sea. Journal of Geophysical Research: Oceans, 108(C11): 3342. doi: 10.1029/2003JC001883
    [16]
    Jacob R, Larson J, Ong E. 2005. M×N communication and parallel interpolation in Community Climate System Model Version 3 using the model coupling toolkit. The International Journal of High Performance Computing Applications, 19(3): 293–307. doi: 10.1177/1094342005056116
    [17]
    Kirby J T, Chen T M. 1989. Surface waves on vertically sheared flows: approximate dispersion relations. Journal of Geophysical Research: Oceans, 94(C1): 1013–1027. doi: 10.1029/JC094iC01p01013
    [18]
    Kumar N, Voulgaris G, Warner J C, et al. 2012. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modelling, 47: 65–95. doi: 10.1016/j.ocemod.2012.01.003
    [19]
    Larson J, Jacob, R, Ong, E. 2004. The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models. Preprint ANL/MCSP1208–1204. Mathematics and Computer Science Division, Argonne National Laboratory, 25
    [20]
    Longuet-Higgins M S. 1970. Longshore currents generated by obliquely incident sea waves: 2. Journal of Geophysical Research, 75(33): 6790–6801. doi: 10.1029/JC075i033p06790
    [21]
    Longuet-Higgins M S, Stewart R W. 1962. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. Journal of Fluid Mechanics, 13(4): 481–504. doi: 10.1017/S0022112062000877
    [22]
    Lü Xingang, Qiao Fangli, Wang Guansuo, et al. 2008. Upwelling off the west coast of Hainan Island in summer: Its detection and mechanisms. Geophysical Research Letters, 35(2): L02604
    [23]
    Madsen O S. 1994. Spectral wave–current bottom boundary layer flows. In: Proceedings of the 24th International Conference on Coastal Engineering. Kobe, Japan: American Society of Civil Engineers, 384–398
    [24]
    McWilliams J C, Restrepo J M, Lane E M. 2004. An asymptotic theory for the interaction of waves and currents in coastal waters. Journal of Fluid Mechanics, 511: 135–178. doi: 10.1017/S0022112004009358
    [25]
    Minh N N, Patrick M, Florent L, et al. 2014. Tidal characteristics of the gulf of Tonkin. Continental Shelf Research, 91: 37–56. doi: 10.1016/j.csr.2014.08.003
    [26]
    Niu Qianru, Xia Meng. 2017. The role of wave-current interaction in Lake Erie’s seasonal and episodic dynamics. Journal of Geophysical Research: Oceans, 122(9): 7291–7311. doi: 10.1002/2017JC012934
    [27]
    Olabarrieta M, Warner J C, Armstrong B, et al. 2012. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modelling, 43: 112–137
    [28]
    Olabarrieta M, Warner J C, Kumar N. 2011. Wave-current interaction in Willapa Bay. Journal of Geophysical Research: Oceans, 116(C12): C12014. doi: 10.1029/2011JC007387
    [29]
    Osuna P, Monbaliu J. 2004. Wave-current interaction in the Southern North Sea. Journal of Marine Systems, 52(1–4): 65–87. doi: 10.1016/j.jmarsys.2004.03.002
    [30]
    Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8): 929–937
    [31]
    Pleskachevsky A, Eppel D P, Kapitza H. 2009. Interaction of waves, currents and tides, and wave-energy impact on the beach area of Sylt Island. Ocean Dynamics, 59(3): 451–461. doi: 10.1007/s10236-008-0174-1
    [32]
    Qiao Fangli, Xia Changshui, Shi Jianwei, et al. 2004. Seasonal variability of thermocline in the Yellow Sea. Chinese Journal of Oceanology and Limnology, 22(3): 299–305. doi: 10.1007/BF02842563
    [33]
    Ris R C, Holthuijsen L H, Booij N. 1999. A third-generation wave model for coastal regions: 2. Verification. Journal of Geophysical Research: Oceans, 104(C4): 7667–7681. doi: 10.1029/1998JC900123
    [34]
    Roblou L, Lamouroux J, Bouffard J, et al. 2011. Post-processing altimeter data towards coastal applications and integration into coastal models. In: Vignudelli S, Kostianoy A G, Cipollini P, et al, eds. Coastal Altimetry. Berlin, Heidelberg: Springer, 217–246
    [35]
    Roblou L, Lyard F, Le Henaff M, et al. 2007. X-TRACK, a new processing tool for altimetry in coastal oceans. In: Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE, 5129–5133
    [36]
    Rong Zengrui, Hetland R D, Zhang Wenxia, et al. 2014. Current-wave interaction in the Mississippi-Atchafalaya river plume on the Texas-Louisiana shelf. Ocean Modelling, 84: 67–83. doi: 10.1016/j.ocemod.2014.09.008
    [37]
    Shchepetkin A F, McWilliams J C. 2005. The Regional Oceanic Modeling System (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
    [38]
    Shi Maochong, Chen Changsheng, Xu Qichun, et al. 2002. The role of Qiongzhou Strait in the seasonal variation of the South China Sea circulation. Journal of Physical Oceanography, 32(1): 103–121. doi: 10.1175/1520-0485(2002)032<0103:TROQSI>2.0.CO;2
    [39]
    Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the advanced research WRF version 2. NCAR Technical Note, NCAR/TN-468+STR
    [40]
    Svendsen I A. 1984. Mass flux and undertow in a surf zone. Coastal Engineering, 8(4): 347–365. doi: 10.1016/0378-3839(84)90030-9
    [41]
    Uchiyama Y, McWilliams J C, Shchepetkin A F. 2010. Wave-current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone. Ocean Modelling, 34(1–2): 16–35. doi: 10.1016/j.ocemod.2010.04.002
    [42]
    Umlauf L, Burchard H. 2003. A generic length-scale equation for geophysical turbulence models. Journal of Marine Research, 61(2): 235–265. doi: 10.1357/002224003322005087
    [43]
    Vincent C E. 1979. The interaction of wind-generated sea waves with tidal currents. Journal of Physical Oceanography, 9(4): 748–755. doi: 10.1175/1520-0485(1979)009<0748:TIOWGS>2.0.CO;2
    [44]
    Warner J C, Armstrong B, He Ruoying, et al. 2010. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modelling, 35(3): 230–244. doi: 10.1016/j.ocemod.2010.07.010
    [45]
    Warner J C, Sherwood C R, Arango H G, et al. 2005. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling, 8(1–2): 81–113. doi: 10.1016/j.ocemod.2003.12.003
    [46]
    Warner J C, Sherwood C R, Signell R P, et al. 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & Geosciences, 34(10): 1284–1306
    [47]
    Wolf J, Prandle D. 1999. Some observations of wave-current interaction. Coastal Engineering, 37(3–4): 471–485. doi: 10.1016/S0378-3839(99)00039-3
    [48]
    Wu Dexing, Wang Yue, Lin Xiaopei, et al. 2008. On the mechanism of the cyclonic circulation in the Gulf of Tonkin in the summer. Journal of Geophysical Research: Oceans, 113(C9): C09029
    [49]
    Xie Lian, Wu Kejian, Pietrafesa L, et al. 2001. A numerical study of wave-current interaction through surface and bottom stresses: Wind-driven circulation in the South Atlantic Bight under uniform winds. Journal of Geophysical Research: Oceans, 106(C8): 16841–16855. doi: 10.1029/2000JC000292
    [50]
    Yang Yongzeng, Qiao Fangli, Xia Changshui, et al. 2004. Wave-induced mixing in the Yellow Sea. Chinese Journal of Oceanology and Limnology, 22(3): 322–326. doi: 10.1007/BF02842566
    [51]
    Zhang Xuefeng, Han Guijun, Wang Dongxiao, et al. 2011. Effect of surface wave breaking on the surface boundary layer of temperature in the Yellow sea in summer. Ocean Modelling, 38(3–4): 267–279. doi: 10.1016/j.ocemod.2011.04.006
    [52]
    Zhang Chen, Hou Yijun, Li Jian. 2018. Wave-current interaction during Typhoon Nuri (2008) and Hagupit (2008): an application of the coupled ocean-wave modeling system in the northern South China Sea. Journal of Oceanology and Limnology, 36(3): 663–675. doi: 10.1007/s00343-018-6088-y
    [53]
    Zhao Huanting. 1990. The Evolution of the Pearl River Estuary (in Chinese). Beijing: China Ocean Press, 1–357
    [54]
    Zhao Biao, Qiao Fangli, Cavaleri L, et al. 2017. Sensitivity of typhoon modeling to surface waves and rainfall. Journal of Geophysical Research: Oceans, 122(3): 1702–1723. doi: 10.1002/2016JC012262
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article Metrics

    Article views (305) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return