Volume 39 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
Guifen Wang, Wen Zhou, Zhantang Xu, Wenlong Xu, Yuezhong Yang, Wenxi Cao. Vertical variations in the bio-optical properties of seawater in the northern South China Sea during summer 2008[J]. Acta Oceanologica Sinica, 2020, 39(4): 42-56. doi: 10.1007/s13131-020-1535-y
Citation: Guifen Wang, Wen Zhou, Zhantang Xu, Wenlong Xu, Yuezhong Yang, Wenxi Cao. Vertical variations in the bio-optical properties of seawater in the northern South China Sea during summer 2008[J]. Acta Oceanologica Sinica, 2020, 39(4): 42-56. doi: 10.1007/s13131-020-1535-y

Vertical variations in the bio-optical properties of seawater in the northern South China Sea during summer 2008

doi: 10.1007/s13131-020-1535-y
Funds:  The National Natural Science Foundation of China under contract Nos 41776045 and 41576030; the Fundamental Research Funds for the Central Universities under contract No. 2017B06714; the Open Project Program of the State Key Laboratory of Tropical Oceanography under contract No. LTOZZ1602; the Science and Technology Program of Guangzhou, China under contract No. 201607020041.
More Information
  • Corresponding author: E-mail: guifenwang@hhu.edu.cn
  • Received Date: 2019-01-28
  • Accepted Date: 2019-05-27
  • Available Online: 2020-12-28
  • Publish Date: 2020-04-25
  • Vertical variability in the bio-optical properties of seawater in the northern South China Sea (NSCS) including inherent optical properties (IOPs) and chlorophyll a concentration (Chl) were studied on the basis of in situ data collected in summer 2008 using an absorption/attenuation spectrophotometer. An empirical model was developed to estimate Chl profiles based on the absorption line height at long wavelengths, with a relative root mean square error of 37.03%. Bio-optical properties exhibited large horizontal and vertical spatial variability. As influenced by coastal upwelling and the Zhujiang River (Pearl River) discharge, both IOPs and Chl exhibited high values in the surface waters of the inner shelf, which tended to decrease with distance offshore. Subsurface maximum layers of IOPs and Chl were observed in the middle and outer shelf regions, along with significantly higher values of attenuation coefficients beneath this layer that rapidly increased towards the bottom. In the open ocean, both IOPs and Chl exhibited consistent variability, with the subsurface maximum layer typically located at 34–84 m. Phytoplankton were found to be one of the major components in determining the vertical variability of bio-optical properties, with their vertical dynamics influenced by both physical forcing and light attenuation effects. The depth of the subsurface maximum layer was found to be closely related to the fluctuation of the oceanic thermocline and the depth of the euphotic zone, which also affected the total integrated biomass of the upper ocean. Typically high values of attenuation coefficients observed in the bottom waters of the continental shelf reflected the transport of particulate matter over the bottom boundary layer. Our results reveal large spatial differences in bio-optical profiles in response to complex marine ecodynamics in the NSCS. From the perspective of marine research, high-resolution optical measurements are clearly advantageous over conventional bottle sampling.
  • loading
  • [1]
    Barnard A H, Pegau W S, Zaneveld J R V. 1998. Global relationships of the inherent optical properties of the oceans. Journal of Geophysical Research, 103(C11): 24955–24968. doi: 10.1029/98JC01851
    [2]
    Behrenfeld M J, Boss E. 2003. The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean?. Deep Sea Research Part I: Oceanographic Research Papers, 50(12): 1537–1549. doi: 10.1016/j.dsr.2003.09.002
    [3]
    Behrenfeld M J, Boss E, Siegel D A, et al. 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles, 19(1): GB1006
    [4]
    Bishop J K B. 1999. Transmissometer measurement of POC. Deep Sea Research Part I: Oceanographic Research Papers, 46(2): 353–369. doi: 10.1016/S0967-0637(98)00069-7
    [5]
    Boss E S, Collier R, Larson G, et al. 2007. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR. Hydrobiologia, 574(1): 149–159. doi: 10.1007/s10750-006-2609-3
    [6]
    Boss E, Pegau W S, Gardner W D, et al. 2001. Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf. Journal of Geophysical Research: Oceans, 106(C5): 9509–9516. doi: 10.1029/2000JC900077
    [7]
    Boss E, Picheral M, Leeuw T, et al. 2013. The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition. Methods in Oceanography, 7: 52–62. doi: 10.1016/j.mio.2013.11.002
    [8]
    Brewin R J W, Dall’Olmo G, Pardo S, et al. 2016. Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals. Remote Sensing of Environment, 183: 82–97. doi: 10.1016/j.rse.2016.05.005
    [9]
    Buesseler K O. 2001. Ocean biogeochemistry and the global carbon cycle: an introduction to the U.S. joint global ocean flux study. Oceanography, 14(4): 5. doi: 10.5670/oceanog.2001.01
    [10]
    Chang G C, Dickey T D. 2001. Optical and physical variability on timescales from minutes to the seasonal cycle on the New England shelf: July 1996 to June 1997. Journal of Geophysical Research: Oceans, 106(C5): 9435–9453. doi: 10.1029/2000JC900069
    [11]
    Chen C C, Shiah F K, Chung S W, et al. 2006. Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. Journal of Marine Systems, 59(1–2): 97–110. doi: 10.1016/j.jmarsys.2005.09.002
    [12]
    Claustre H, Fell F, Oubelkheir K, et al. 2000. Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences. Limnology and Oceanography, 45(2): 309–321
    [13]
    Cui Wansong, Wang Difeng, Gong Fang, et al. 2016. The vertical distribution of the beam attenuation coefficient and its correlation to the particulate organic carbon in the north South China Sea. In: Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions. Edinburgh, United Kingdom: SPIE, 2016
    [14]
    Cullen J J. 1982. The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences, 39(5): 791–803. doi: 10.1139/f82-108
    [15]
    Cullen J J. 2015. Subsurface chlorophyll maximum layers: Enduring enigma or mystery solved?. Annual Review of Marine Science, 7: 207–239. doi: 10.1146/annurev-marine-010213-135111
    [16]
    Dickey T D. 2001. The role of new technology in advancing ocean biogeochemical research. Oceanography, 14(4): 108–120. doi: 10.5670/oceanog.2001.11
    [17]
    Fennel K, Boss E. 2003. Subsurface maxima of phytoplankton and chlorophyll: Steady-state solutions from a simple model. Limnology and Oceanography, 48(4): 1521–1534. doi: 10.4319/lo.2003.48.4.1521
    [18]
    Fujii M, Boss E, Chai F. 2007. The value of adding optics to ecosystem models: a case study. Biogeosciences, 4(5): 817–835. doi: 10.5194/bg-4-817-2007
    [19]
    Gardner W D, Gundersen J S, Richardson M J, et al. 1999. The role of seasonal and diel changes in mixed-layer depth on carbon and chlorophyll distributions in the Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 46(8–9): 1833–1858. doi: 10.1016/S0967-0645(99)00046-6
    [20]
    Gernez P, Antoine D, Huot Y. 2011. Diel cycles of the particulate beam attenuation coefficient under varying trophic conditions in the northwestern Mediterranean Sea: Observations and modeling. Limnology and Oceanography, 56(1): 17–36. doi: 10.4319/lo.2011.56.1.0017
    [21]
    Gong Xiang, Shi Jie, Gao Huiwang, et al. 2014. Modeling seasonal variations of subsurface chlorophyll maximum in South China Sea. Journal of Ocean University of China, 13(4): 561–571. doi: 10.1007/s11802-014-2060-4
    [22]
    Gong Xiang, Shi Jinhui, Gao Huiwang, et al. 2015. Steady-state solutions for subsurface chlorophyll maximum in stratified water columns with a bell-shaped vertical profile of chlorophyll. Biogeosciences, 12(4): 905–919. doi: 10.5194/bg-12-905-2015
    [23]
    Kara A B, Rochford P A, Hurlburt H E. 2000. An optimal definition for ocean mixed layer depth. Journal of Geophysical Research, 105(C7): 16803–16821. doi: 10.1029/2000JC900072
    [24]
    Kheireddine M, Antoine D. 2014. Diel variability of the beam attenuation and backscattering coefficients in the northwestern Mediterranean Sea (BOUSSOLE site). Journal of Geophysical Research: Oceans, 119(8): 5465–5482. doi: 10.1002/2014JC010007
    [25]
    Kitchen J C, Zaneveld J R V. 1990. On the noncorrelation of the vertical structure of light scattering and chlorophyll α in case I waters. Journal of Geophysical Research: Oceans, 95(C11): 20237–20246. doi: 10.1029/JC095iC11p20237
    [26]
    Knap A, Michaels A, Close A, et al. 1996. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. Reprint of the IOC Manuals and Guides No. 29, UNESCO, Paris
    [27]
    Lavigne H, D’Ortenzio F, D’Alcalà M R, et al. 2015. On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach. Biogeosciences, 12(16): 5021–5039. doi: 10.5194/bg-12-5021-2015
    [28]
    Li Q P, Dong Y, Wang Y. 2016. Phytoplankton dynamics driven by vertical nutrient fluxes during the spring inter-monsoon period in the northeastern South China Sea. Biogeosciences, 13: 455–466. doi: 10.5194/bg-13-455-2016
    [29]
    Li Q P, Franks P J S, Landry M R, et al. 2010. Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems. Journal of Geophysical Research, 115(G4): G04003
    [30]
    Lin Junfang, Cao Wenxin, Wang Guifen, et al. 2014. Inversion of bio-optical properties in the coastal upwelling waters of the northern South China Sea. Continental Shelf Research, 85: 73–84. doi: 10.1016/j.csr.2014.06.001
    [31]
    Lin Peigen, Cheng Peng, Gan Jianping, et al. 2016. Dynamics of wind-driven upwelling off the northeastern coast of Hainan Island. Journal of Geophysical Research: Oceans, 121(2): 1160–1173. doi: 10.1002/2015JC011000
    [32]
    Liu K K, Chao S Y, Shaw P T, et al. 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Research Part I: Oceanographic Research Papers, 49(8): 1387–1412. doi: 10.1016/S0967-0637(02)00035-3
    [33]
    Liu Fenfen, Tang Shilin, Chen Chuqun. 2013. Impact of nonlinear mesoscale eddy on phytoplankton distribution in the northern South China Sea. Journal of Marine Systems, 123–124: 33–40. doi: 10.1016/j.jmarsys.2013.04.005
    [34]
    Lu Zhongming, Gan Jianping, Dai Minhan, et al. 2010. The influence of coastal upwelling and a river plume on the subsurface chlorophyll maximum over the shelf of the northeastern South China Sea. Journal of Marine Systems, 82(1–2): 35–46. doi: 10.1016/j.jmarsys.2010.03.002
    [35]
    Ma Jinfeng, Zhan Haigang, Du Yan. 2011. Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño. Journal of Marine Systems, 85(3–4): 86–95. doi: 10.1016/j.jmarsys.2010.12.006
    [36]
    McGillicuddy D J Jr. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annual Review of Marine Science, 8(1): 125–159. doi: 10.1146/annurev-marine-010814-015606
    [37]
    McGillicuddy D J Jr, Johnson R, Siegel D A, et al. 1999. Mesoscale variations of biogeochemical properties in the Sargasso Sea. Journal of Geophysical Research: Oceans, 104(C6): 13381–13394. doi: 10.1029/1999JC900021
    [38]
    Mignot A, Claustre H, D’Ortenzio F, et al. 2011. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration. Biogeosciences, 8(8): 2391–2406. doi: 10.5194/bg-8-2391-2011
    [39]
    Mignot A, Claustre H, Uitz J, et al. 2014. Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float investigation. Global Biogeochemical Cycles, 28(8): 856–876. doi: 10.1002/2013GB004781
    [40]
    Mitchell B G, Kahru M, Wieland J, et al. 2003. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Mueller J L, Fargoin G S, McClain C R, eds. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, revision 4, Vol. IV (Chapter 4), NASA/TM-2003-211621/Rev4-vol. 4. Greenbelt, MD: NASA Goddard Space Flight Center, 39–64
    [41]
    Mobley C D. 1994. Light and Water: Radiative Transfer in Natural Waters. San Diego, CA, USA: Academic Press
    [42]
    Morel A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). Journal of Geophysical Research: Oceans, 93(C9): 10749–10768. doi: 10.1029/JC093iC09p10749
    [43]
    Morel A, Maritorena S. 2001. Bio-optical properties of oceanic waters: A reappraisal. Journal of Geophysical Research: Oceans, 106(C4): 7163–7180. doi: 10.1029/2000JC000319
    [44]
    Nencioli F, Chang G, Twardowski M, et al. 2010. Optical characterization of an eddy-induced diatom bloom west of the island of Hawaii. Biogeosciences, 7(1): 151–162. doi: 10.5194/bg-7-151-2010
    [45]
    Ning Xiuren, Chai Fei, Xue Huijie, et al. 2004. Physical-biological oceanographic couplinginfluencing phytoplankton and primary production in the South China Sea. Journal of Geophysical Research: Oceans, 109: C10005. doi: 10.1029/2004JC002365
    [46]
    Oubelkheir K, Claustre H, Sciandra A, et al. 2005. Bio-optical and biogeochemical properties of different trophic regimes in oceanic waters. Limnology and Oceanography, 50(6): 1795–1809. doi: 10.4319/lo.2005.50.6.1795
    [47]
    Oubelkheir K, Sciandra A. 2008. Diel variations in particle stocks in the oligotrophic waters of the Ionian Sea (Mediterranean). Journal of Marine Systems, 74(1–2): 364–371. doi: 10.1016/j.jmarsys.2008.02.008
    [48]
    Pan Xiaoju, Wong G T F, Tai J H, et al. 2015. Climatology of physical hydrographic and biological characteristics of the Northern South China Sea Shelf-sea (NoSoCS) and adjacent waters: Observations from satellite remote sensing. Deep Sea Research Part II: Topical Studies in Oceanography, 117: 10–22. doi: 10.1016/j.dsr2.2015.02.022
    [49]
    Parsons T, Takahashi M, Hargrave B. 1984. Biological Oceanographic Processes. 3rd ed. England: Pergamon Press, 330
    [50]
    Pérez V, Fernández E, Marañón E, et al. 2006. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Research Part I: Oceanographic Research Papers, 53(10): 1616–1634. doi: 10.1016/j.dsr.2006.07.008
    [51]
    Platt T, Bouman H, Devred E, et al. 2005. Physical forcing and phytoplankton distributions. Scientia Marina, 69(S1): 55–73. doi: 10.3989/scimar.2005.69s155
    [52]
    Roesler C S, Barnard A H. 2013. Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height. Methods in Oceanography, 7: 79–94. doi: 10.1016/j.mio.2013.12.003
    [53]
    Shang Shaoling, Li Li, Li Jun, et al. 2012. Phytoplankton bloom during the northeast monsoon in the Luzon Strait bordering the Kuroshio. Remote Sensing of Environment, 124: 38–48. doi: 10.1016/j.rse.2012.04.022
    [54]
    Stramski D, Reynolds R A, Babin M, et al. 2008. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences, 5(1): 171–201. doi: 10.5194/bg-5-171-2008
    [55]
    Sullivan J M, Twardowski M S, Zaneveld J R V, et al. 2006. Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range. Applied Optics, 45(21): 5294–5309. doi: 10.1364/AO.45.005294
    [56]
    Uitz J, Claustre H, Morel A, et al. 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. Journal of Geophysical Research: Oceans, 111(C8): C08005
    [57]
    Wang Guifen, Cao Wenxi, Yang Dingtian, et al. 2008. Variation in downwelling diffuse attenuation coefficient in the northern South China Sea. Chinese Journal of Oceanology and Limnology, 26(3): 323–333. doi: 10.1007/s00343-008-0323-x
    [58]
    Wang Lei, Huang Bangqin, Chiang K P, et al. 2016. Physical-biological coupling in the western South China Sea: The response of phytoplankton community to a mesoscale cyclonic eddy. PLoS One, 11(4): e0153735. doi: 10.1371/journal.pone.0153735
    [59]
    Wang Lei, Huang Bangqin, Laws E A, et al. 2018. Anticyclonic eddy edge effects on phytoplankton communities and particle export in the northern South China Sea. Journal of Geophysical Research: Oceans, 123(11): 7632–7650. doi: 10.1029/2017JC013623
    [60]
    Wang Dongxiao, Shu Yeqiang, Xue Huijie, et al. 2014. Relative contributions of local wind and topography to the coastal upwelling intensity in the northern South China Sea. Journal of Geophysical Research: Oceans, 119(4): 2550–2567. doi: 10.1002/2013JC009172
    [61]
    Wang Guifen, Zhou Wen, Cao Wenxi, et al. 2011. Variation of particulate organic carbon and its relationship with bio-optical properties during a phytoplankton bloom in the Pearl River estuary. Marine Pollution Bulletin, 62(9): 1939–1947. doi: 10.1016/j.marpolbul.2011.07.003
    [62]
    Wong G T F, Pan Xiaoju, Li Kuoyuan, et al. 2015. Hydrography and nutrient dynamics in the Northern South China Sea Shelf-sea (NoSoCS). Deep Sea Research Part II: Topical Studies in Oceanography, 117: 23–40. doi: 10.1016/j.dsr2.2015.02.023
    [63]
    Xing Xiaogang, Claustre H, Uitz J, et al. 2014. Seasonal variations of bio-optical properties and their interrelationships observed by Bio-Argo floats in the subpolar North Atlantic. Journal of Geophysical Research: Oceans, 119(10): 7372–7388. doi: 10.1002/2014JC010189
    [64]
    Xiu Peng, Chai Fei. 2014. Connections between physical, optical and biogeochemical processes in the Pacific Ocean. Progress in Oceanography, 122: 30–53. doi: 10.1016/j.pocean.2013.11.008
    [65]
    Xiu Peng, Liu Yuguang, Li Gang, et al. 2009. Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model. Continental Shelf Research, 29(19): 2270–2279. doi: 10.1016/j.csr.2009.09.003
    [66]
    Xu Wenlong, Wang Guifen, Zhou Wen, et al. 2018. Vertical variability of chlorophyll a concentration and its responses to hydrodynamic processes in the northeastern South China Sea in summer. Journal of Tropical Oceanography (in Chinese), 37(5): 62–73
    [67]
    Ye H J, Sui Y, Tang D L, et al. 2013. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea. Journal of Marine Systems, 128: 138–145. doi: 10.1016/j.jmarsys.2013.04.010
    [68]
    Zaneveld J R V, Kitchen J C, Moore C C. 1994. Scattering error correction of reflecting-tube absorption meters. In: Ocean Optics XII. Bergen, Norway: SPIE
    [69]
    Zhang Wenzhou, Wang Haili, Chai Fei, et al. 2016. Physical drivers of chlorophyll variability in the open South China Sea. Journal of Geophysical Research: Oceans, 121(9): 7123–7140. doi: 10.1002/2016JC011983
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (185) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return