Volume 39 Issue 5
May  2020
Turn off MathJax
Article Contents
Weihua Ai, Mengyan Feng, Guanyu Chen, Wen Lu. Research on sea surface temperature retrieval by the one-dimensional synthetic aperture microwave radiometer, 1D-SAMR[J]. Acta Oceanologica Sinica, 2020, 39(5): 115-122. doi: 10.1007/s13131-020-1540-1
Citation: Weihua Ai, Mengyan Feng, Guanyu Chen, Wen Lu. Research on sea surface temperature retrieval by the one-dimensional synthetic aperture microwave radiometer, 1D-SAMR[J]. Acta Oceanologica Sinica, 2020, 39(5): 115-122. doi: 10.1007/s13131-020-1540-1

Research on sea surface temperature retrieval by the one-dimensional synthetic aperture microwave radiometer, 1D-SAMR

doi: 10.1007/s13131-020-1540-1
Funds:  The National Natural Science Foundation of China under contract Nos 41475019, 41575028, 41705007, 41605016, and 41505016.
More Information
  • Corresponding author: E-mail: a1044175130@163.com
  • Received Date: 2019-03-19
  • Accepted Date: 2019-05-17
  • Available Online: 2020-12-28
  • Publish Date: 2020-05-25
  • Due to the low spatial resolution of sea surface temperature (TS) retrieval by real aperture microwave radiometers, in this study, an iterative retrieval method that minimizes the differences between brightness temperature (TB) measured and modeled was used to retrieve sea surface temperature with a one-dimensional synthetic aperture microwave radiometer, temporarily named 1D-SAMR. Regarding the configuration of the radiometer, an angular resolution of 0.43° was reached by theoretical calculation. Experiments on sea surface temperature retrieval were carried out with ideal parameters; the results show that the main factors affecting the retrieval accuracy of sea surface temperature are the accuracy of radiometer calibration and the precision of auxiliary geophysical parameters. In the case of no auxiliary parameter errors, the greatest error in retrieved sea surface temperature is obtained at low TS scene (i.e., 0.710 6 K for the incidence angle of 35° under the radiometer calibration accuracy of 0.5 K). While errors on auxiliary parameters are assumed to follow a Gaussian distribution, the greatest error on retrieved sea surface temperature was 1.330 5 K at an incidence angle of 65° in poorly known sea surface wind speed (W) (the error on W of 1.0 m/s) over high W scene, for the radiometer calibration accuracy of 0.5 K.
  • loading
  • [1]
    Chelton D B, Wentz F J. 2005. Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bulletin of the American Meteorological Society, 86(8): 1097–1116. doi: 10.1175/BAMS-86-8-1097
    [2]
    Corbella I, Duffo N, Vall-Llossera M, et al. 2004. The visibility function in interferometric aperture synthesis radiometry. IEEE Transactions on Geoscience & Remote Sensing, 42(8): 1677–1682
    [3]
    Curry J A, Bentamy A, Bourassa M A, et al. 2004. Seaflux. Bulletin of the American Meteorological Society, 85(3): 409–424. doi: 10.1175/BAMS-85-3-409
    [4]
    Font J, Camps A, Borges A, et al. 2010. SMOS: The challenging sea surface salinity measurement from space. Proceedings of the IEEE, 98(5): 649–665. doi: 10.1109/JPROC.2009.2033096
    [5]
    Guan L, Kawamura H. 2003. SST availabilities of satellite infrared and microwave measurements. Journal of Oceanography, 59(2): 201–209. doi: 10.1023/A:1025543305658
    [6]
    Kerr Y H, Waldteufel P, Wigneron J P, et al. 2001. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience & Remote Sensing, 39(8): 1729–1735
    [7]
    Le Vine D M. 1990. The sensitivity of synthetic aperture radiometers for remote sensing applications from space. Radio Science, 25(4): 441–453. doi: 10.1029/RS025i004p00441
    [8]
    Le Vine D M, Griffis A J, Swift C T, et al. 1994. ESTAR: a synthetic aperture microwave radiometer for remote sensing applications. Proceedings of the IEEE, 82(12): 1787–1801. doi: 10.1109/5.338071
    [9]
    Le Vine D M, Kao M, Swift C T, et al. 1990. Initial results in the development of a synthetic aperture microwave radiometer. IEEE Transactions on Geoscience & Remote Sensing, 28(4): 614–619
    [10]
    Le Vine D M, Swift C T, Haken M. 2001. Development of the synthetic aperture microwave radiometer, ESTAR. IEEE Transactions on Geoscience & Remote Sensing, 39(1): 199–202
    [11]
    Liebe H J, Rosenkranz P W, Hufford G A. 1992. Atmospheric 60-GHz oxygen spectrum: New laboratory measurements and line parameters. Journal of Quantitative Spectroscopy & Radiative Transfer, 48(5–6): 629–643
    [12]
    Lim B H. 2009. The design and development of a geostationary synthetic thinned aperture radiometer [dissertation]. Michigan: The University of Michigan
    [13]
    Mätzler C. 2006. Thermal Microwave Radiation: Applications for Remote Sensing. London: Institution of Engineering & Technology
    [14]
    Meissner T, Wentz F J. 2004. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Transactions on Geoscience & Remote Sensing, 42(9): 1836–1849
    [15]
    Meissner T, Wentz F J. 2012. The Emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Transactions on Geoscience & Remote Sensing, 50(8): 3004–3026
    [16]
    Reynolds R W, Rayner N A, Smith T M, et al. 2002. An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13): 1609–1625. doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
    [17]
    Rosenkranz P W. 1999. Correction [to “Water vapor microwave continuum absorption: A comparison of measurements and models” by Philip W. Rosenkranz]. Radio Science, 34(4): 1025
    [18]
    Ruf C S, Swift C T, Tanner A B, et al. 1988. Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth. IEEE Transactions on Geoscience & Remote Sensing, 26(5): 597–611
    [19]
    Schanda E. 1979. Multiple wavelength aperture synthesis for passive sensing of the earth’s surface. In: Antennas and Propagation Society International Symposium. Seattle, WA, USA: IEEE, 762–763
    [20]
    Schwartz M J. 1998. Observation and modeling of atmospheric oxygen millimeter-wave transmittance [dissertation]. Cambridge, MA: Massachusetts Institute of Technology
    [21]
    Ulaby F T, Moore R K, Fung A K. 1981. Microwave Remote Sensing: Active and Passive. Volume 1: Microwave Remote Sensing Fundamentals and Radiometry. Reading, MA, USA: Addison-Wesley
    [22]
    Wentz F J, Meissner T. 2000. Algorithm theoretical basis document (ATBD). Version 2: AMSR ocean algorithm. Santa Rosa, CA: Remote Sensing Systems
    [23]
    Wentz F J, Meissner T. 2016. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations. Radio Science, 51(5): 381–391. doi: 10.1002/2015RS005858
    [24]
    Zine S, Boutin J, Font J, et al. 2008. Overview of the SMOS sea surface salinity prototype processor. IEEE Transactions on Geoscience & Remote Sensing, 46(3): 621–645
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (196) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return