Volume 39 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
Dearlyn Fernandes, Ying Wu, Prabhaker Vasant Shirodkar, Umesh Kumar Pradhan, Jing Zhang. Sources and implications of particulate organic matter from a small tropical river—Zuari River, India[J]. Acta Oceanologica Sinica, 2020, 39(4): 18-32. doi: 10.1007/s13131-020-1544-x
Citation: Dearlyn Fernandes, Ying Wu, Prabhaker Vasant Shirodkar, Umesh Kumar Pradhan, Jing Zhang. Sources and implications of particulate organic matter from a small tropical river—Zuari River, India[J]. Acta Oceanologica Sinica, 2020, 39(4): 18-32. doi: 10.1007/s13131-020-1544-x

Sources and implications of particulate organic matter from a small tropical river—Zuari River, India

doi: 10.1007/s13131-020-1544-x
Funds:  The National Natural Science Foundation of China under contract No. 41530960.
More Information
  • Corresponding author: E-mail: dearlynfernandes@qq.com
  • Received Date: 2019-07-01
  • Accepted Date: 2019-10-10
  • Available Online: 2020-12-28
  • Publish Date: 2020-04-25
  • Transitional ecosystems, estuaries and the coastal seas, are distinctively affected by natural and anthropogenic factors. Organic matter (OM) originating from terrestrial sources is exported by rivers and forms a key component of the global biogeochemical cycles. Most previous studies focused on the bulk biochemical and anthropogenic aspects affecting these ecosystems. In the present study, we examined the sources and fate of OM entrained within suspended particulate matter (SPM) of the Zuari River and its estuary, west coast of India. Besides using amino acid (AA) enantiomers (L- and D-forms) as biomarkers, other bulk biochemical parameters viz. particulate organic carbon (POC), δ13C, particulate nitrogen (PN), δ15N and chlorophyll a were analyzed. Surprisingly no significant temporal variations were observed in the parameters analyzed; nonetheless, salinity, POC, δ13C, PN, δ15N, glutamic acid, serine, alanine, tyrosine, leucine and D-aspartic acid exhibited significant spatial variability suggesting source differentiation. The POC content displayed weak temporal variability with low values observed during the post-monsoon season attributed to inputs from mixed sources. Estuarine samples were less depleted than the riverine samples suggesting contributions from marine plankton in addition to contributions from river plankton and terrestrial C3 plants detritus. Labile OM was observed during the monsoon and post-monsoon seasons in the estuarine region. More degraded OM was noticed during the pre-monsoon season. Principal component analysis was used to ascertain the sources and factors influencing OM. Principally five factors were extracted explaining 84.52% of the total variance. The first component accounted for 27.10% of the variance suggesting the dominance of tidal influence whereas, the second component accounted for heterotrophic bacteria and their remnants associated with the particulate matter, contributing primarily to the AA pool. Based on this study we ascertained the role of the estuarine turbidity maximum (ETM) controlling the sources of POM and its implications to small tropical rivers. Thus, changes in temporal and regional settings are more likely to affect the natural biogeochemical cycles of small tropical rivers.
  • loading
  • [1]
    Abril G, Borges A V. 2005. Carbon dioxide and methane emissions from estuaries. In: Tremblay A, Varfalvy L, Roehm C, et al., eds. Greenhouse Gas Emissions—Fluxes and Processes. Environmental Science. Berlin, Heidelberg: Springer, 187–207
    [2]
    Abril G, Commarieu M V, Guérin F. 2007. Enhanced methane oxidation in an estuarine turbidity maximum. Limnology and Oceanography, 52(1): 470–475. doi: 10.4319/lo.2007.52.1.0470
    [3]
    Abril G, Riou S A, Etcheber H, et al. 2000. Transient, tidal time-scale, nitrogen transformations in an estuarine turbidity maximum—fluid mud system (The Gironde, South-west France). Estuarine, Coastal and Shelf Science, 50(5): 703–715. doi: 10.1006/ecss.1999.0598
    [4]
    Andersson A. 2011. A systematic examination of a random sampling strategy for source apportionment calculations. Science of the Total Environment, 412–413: 232–238. doi: 10.1016/j.scitotenv.2011.10.031
    [5]
    Bardhan P, Karapurkar S G, Shenoy D M, et al. 2015. Carbon and nitrogen isotopic composition of suspended particulate organic matter in Zuari Estuary, west coast of India. Journal of Marine Systems, 141: 90–97. doi: 10.1016/j.jmarsys.2014.07.009
    [6]
    Bhaskar P V, Bhosle N B. 2008. Bacterial production, glucosidase activity and particle-associated carbohydrates in Dona Paula bay, west coast of India. Estuarine, Coastal and Shelf Science, 80(3): 413–424. doi: 10.1016/j.ecss.2008.09.005
    [7]
    Bhosle N B. 2007. Distribution of tributyltin (TBT) in the Mandovi estuary. In: The Mandovi and Zuari Estuaries. Goa, India: National Institute of Oceanography, 105–114
    [8]
    Bianchi T S, Allison M A. 2009. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings of the National Academy of Sciences of the United States of America, 106(20): 8085–8092. doi: 10.1073/pnas.0812878106
    [9]
    Census Organization of India. 2011. Census 2011. https://www.census2011.co.in/states.php [2013-05-20/2018-12-10]
    [10]
    Cifuentes L A, Sharp J H, Fogel M L. 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnology and Oceanography, 33(5): 1102–1115. doi: 10.4319/lo.1988.33.5.1102
    [11]
    Cowie G L, Hedges J I. 1994. Biochemical indicators of diagenetic alteration in natural organic matter mixtures. Nature, 369(6478): 304–307. doi: 10.1038/369304a0
    [12]
    Dauwe B, Middelburg J J. 1998. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnology and Oceanography, 43(5): 782–798. doi: 10.4319/lo.1998.43.5.0782
    [13]
    Dauwe B, Middelburg J J, Herman P M J, et al. 1999. Linking diagenetic alteration of amino acids and bulk organic matter reactivity. Limnology and Oceanography, 44(7): 1809–1814. doi: 10.4319/lo.1999.44.7.1809
    [14]
    Dessai D V G, Nayak G N. 2009. Distribution and speciation of selected metals in surface sediments, from the tropical Zuari estuary, central west coast of India. Environmental Monitoring and Assessment, 158(1–4): 117–137. doi: 10.1007/s10661-008-0575-0
    [15]
    Dittmar T, Fitznar H P, Kattner G. 2001. Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids. Geochimica et Cosmochimica Acta, 65(22): 4103–4114. doi: 10.1016/S0016-7037(01)00688-3
    [16]
    Dittmar T, Kattner G. 2003. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review. Marine Chemistry, 83(3): 103–120
    [17]
    Eglinton T I, Eglinton G. 2008. Molecular proxies for paleoclimatology. Earth and Planetary Science Letters, 275(1–2): 1–16. doi: 10.1016/j.jpgl.2008.07.012
    [18]
    Fernandes D, Wu Y, Shirodkar P V, et al. 2019. Spatial and temporal variations in source, diagenesis, and fate of organic matter in sediments of the Netravati River, India. Hydrological Processes, 33(20): 2642–2657. doi: 10.1002/hyp.13516
    [19]
    Fernandes L L, Kessarkar P M, Suja S, et al. 2018. Seasonal variations in the water quality of six tropical micro- and meso-tidal estuaries along the central west coast of India. Marine and Freshwater Research, 69(9): 1418–1431. doi: 10.1071/MF17181
    [20]
    Fitznar H P, Lobbes J M, Kattner G. 1999. Determination of enantiomeric amino acids with high-performance liquid chromatography and pre-column derivatisation with o-phthaldialdehyde and N-isobutyrylcysteine in seawater and fossil samples (mollusks). Journal of Chromatography A, 832(1–2): 123–132. doi: 10.1016/S0021-9673(98)01000-0
    [21]
    Fry B, Sherr E B. 1989. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In: Rundel P W, Ehleringr J R, Nagy K A, eds. Stable Isotopes in Ecological Research. New York: Springer-Verlag, 196–229
    [22]
    Geyer W R. 1993. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum. Estuaries, 16: 113–125. doi: 10.2307/1352769
    [23]
    Goldsmith S T, Moyer R P, Harmon R J. 2015. Hydrochemistry and biogeochemistry of tropical small mountain rivers. Applied Geochemistry, 63: 453–455. doi: 10.1016/j.apgeochem.2015.11.005
    [24]
    Goñi M A, Teixeira M J, Perkey D W. 2003. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science, 57(5–6): 1023–1048. doi: 10.1016/S0272-7714(03)00008-8
    [25]
    Gordon E S, Goñi M A. 2003. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochimica et Cosmochimica Acta, 67(13): 2359–2375. doi: 10.1016/S0016-7037(02)01412-6
    [26]
    Gupta L, Subramanian V, Ittekkot V. 1997. Biogeochemistry of particulate organic matter transported by the Godavari River, India. Biogeochemistry, 38(2): 103–128. doi: 10.1023/A:1005732519216
    [27]
    Hedges J I, Keil R G, Benner R. 1997. What happens to terrestrial organic matter in the ocean?. Organic Geochemistry, 27(5–6): 195–212. doi: 10.1016/S0146-6380(97)00066-1
    [28]
    Hibbert C, Hudson-Edwards K A, Widdoson M. 2015. Controls on seasonal elemental variation in tropical rivers in Goa, India. In: Goldschmidt 2015. Prague
    [29]
    Hilton R G, Galy A, Hovius N, et al. 2008. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nature Geoscience, 1(11): 759–762. doi: 10.1038/ngeo333
    [30]
    India Meteorological Department (IMD), Ministry of Earth Sciences, Government of India. 2013. Rainfall Statistics of India. http://www.hydro.imd.gov.in [2013-12/2018-09-20]
    [31]
    Jennerjahn T C, Soman K, Ittekkot V, et al. 2008. Effect of land use on the biogeochemistry of dissolved nutrients and suspended and sedimentary organic matter in the tropical Kallada River and Ashtamudi estuary, Kerala, India. Biogeochemistry, 90(1): 29–47. doi: 10.1007/s10533-008-9228-1
    [32]
    Jørgensen L, Stedmon C A, Granskog M A, et al. 2014. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater. Geophysical Research Letters, 41(7): 2481–2488. doi: 10.1002/2014GL059428
    [33]
    Jørgensen N O G, Stepanauskas R, Pedersen A G U, et al. 2003. Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiology Ecology, 46(3): 269–280. doi: 10.1016/S0168-6496(03)00194-6
    [34]
    Kaiser K, Benner R. 2008. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnology and Oceanography, 53(1): 99–112. doi: 10.4319/lo.2008.53.1.0099
    [35]
    Kara D. 2009. Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chemistry, 114(1): 347–354. doi: 10.1016/j.foodchem.2008.09.054
    [36]
    Ke Zhixin, Tan Yehui, Huang Liangmin, et al. 2017. Spatial distributions of δ13C, δ15N and C/N ratios in suspended particulate organic matter of a bay under serious anthropogenic influences: Daya Bay, China. Marine Pollution Bulletin, 114(1): 183–191. doi: 10.1016/j.marpolbul.2016.08.078
    [37]
    Keil R G, Tsamaki E, Hedges J I. 2000. Early diagenesis of particulate amino acids in marine systems. In: Goodfriend G A, Collins M J, Fogel M L, et al., eds. Perspectives in Amino Acid and Protein Geochemistry. Oxford: Oxford University Press, 69–82
    [38]
    Kessarkar P M, Shynu R, Rao V P, et al. 2013. Geochemistry of the suspended sediment in the estuaries of the Mandovi and Zuari rivers, central west coast of India. Environmental Monitoring and Assessment, 185(5): 4461–4480. doi: 10.1007/s10661-012-2883-7
    [39]
    Krishna M S, Mukherjee J, Dalabehera H B, et al. 2018. Particulate organic carbon composition in temperature fronts of the northeastern Arabian Sea during winter. Journal of Geophysical Research: Biogeosciences, 123(2): 463–478. doi: 10.1002/2018JG004387
    [40]
    Li Jiufa, Zhang Chen. 1998. Sediment resuspension and implications for turbidity maximum in the Changjiang Estuary. Marine Geology, 148(3–4): 117–124. doi: 10.1016/S0025-3227(98)00003-6
    [41]
    Li Xinxin, Bianchi T S, Allison M A, et al. 2012. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea. Marine Chemistry, 145-147: 37–52. doi: 10.1016/j.marchem.2012.10.001
    [42]
    Lomstein B A, Niggemann J, Jørgensen B B, et al. 2009. Accumulation of prokaryotic remains during organic matter diagenesis in surface sediments off Peru. Limnology and Oceanography, 54(4): 1139–1151. doi: 10.4319/lo.2009.54.4.1139
    [43]
    Mai-Thi N N, St-Onge G, Tremblay L. 2017. Contrasting fates of organic matter in locations having different organic matter inputs and bottom water O2 concentrations. Estuarine, Coastal and Shelf Science, 198: 63–72. doi: 10.1016/j.ecss.2017.08.044
    [44]
    Manoj N T, Unnikrishnan A S. 2009. Tidal circulation and salinity distribution in the Mandovi and Zuari estuaries: case study. Journal of Waterway, Port, Coastal, and Ocean Engineering, 135(6): 278–287. doi: 10.1061/(ASCE)0733-950X(2009)135:6(278)
    [45]
    Maya M V, Soares M A, Agnihotri R, et al. 2011. Variations in some environmental characteristics including C and N stable isotopic composition of suspended organic matter in the Mandovi Estuary. Environmental Monitoring and Assessment, 175(1–4): 501–517. doi: 10.1007/s10661-010-1547-8
    [46]
    Mayer L M, Schick L L, Sawyer T, et al. 1995. Bioavailable amino acids in sediments: a biomimetic, kinetics based approach. Limnology and Oceanography, 40(3): 511–520. doi: 10.4319/lo.1995.40.3.0511
    [47]
    Meyers P A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114(3-4): 289–302. doi: 10.1016/0009-2541(94)90059-0
    [48]
    Meyers P A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5–6): 213–250. doi: 10.1016/S0146-6380(97)00049-1
    [49]
    Milliman J D, Lee T Y, Huang J C, et al. 2017. Impact of catastrophic events on small mountainous rivers: Temporal and spatial variations in suspended- and dissolved-solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle, July 2–6, 2004. Geochimica et Cosmochimica Acta, 205: 272–294. doi: 10.1016/j.gca.2017.02.015
    [50]
    Mitchell S B, West J R, Arundale A M W, et al. 1999. Dynamics of the turbidity maxima in the Upper Humber Estuary System, UK. Marine Pollution Bulletin, 37(3–7): 190–205. doi: 10.1016/S0025-326X(98)00178-7
    [51]
    Montagnes D J S, Berges J A, Harrison P J, et al. 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography, 39(5): 1044–1060. doi: 10.4319/lo.1994.39.5.1044
    [52]
    Nagata T, Fukuda R, Koike I, et al. 1998. Degradation by bacteria of membrane and soluble protein in seawater. Aquatic Microbial Ecology, 14: 29–37. doi: 10.3354/ame014029
    [53]
    Nagvenkar G S, Ramaiah N. 2009. Abundance of sewage-pollution indicator and human pathogenic bacteria in a tropical estuarine complex. Environmental Monitoring and Assessment, 155(1–4): 245–256. doi: 10.1007/s10661-008-0432-1
    [54]
    Nasir A, Lukman M, Tuwo A, et al. 2016. The use of C/N ratio in assessing the influence of land-based material in coastal water of south Sulawesi and Spermonde Archipelago, Indonesia. Frontiers in Marine Science, 3: 266
    [55]
    Ni Zhaokui, Wang Shengrui, Zhang Mianmian. 2016. Sediment amino acids as indicators of anthropogenic activities and potential environmental risk in Erhai Lake, Southwest China. Science of the Total Environment, 551-552: 217–227. doi: 10.1016/j.scitotenv.2016.02.005
    [56]
    Nunn B L, Keil R G. 2005. Size distribution and amino acid chemistry of base-extractable proteins from Washington Coast sediments. Biogeochemistry, 75(2): 177–200. doi: 10.1007/s10533-004-6546-9
    [57]
    Pradhan U K, Wu Ying, Shirodkar P V, et al. 2014. Sources and distribution of organic matter in thirty five tropical estuaries along the west coast of India—a preliminary assessment. Estuarine, Coastal Shelf Sciences, 151: 21–33. doi: 10.1016/j.ecss.2014.09.010
    [58]
    Qasim S Z, Sen Gupta R. 1981. Environmental characteristics of the Mandovi-Zuari estuarine system in Goa. Estuarine, Coastal and Shelf Science, 13(5): 557–578. doi: 10.1016/S0302-3524(81)80058-8
    [59]
    Rao V P, Shynu R, Kessarkar P M, et al. 2011. Suspended sediment dynamics on a seasonal scale in the Mandovi and Zuari estuaries, central west coast of India. Estuarine, Coastal and Shelf Science, 91(1): 78–86. doi: 10.1016/j.ecss.2010.10.007
    [60]
    Rao V P, Shynu R, Singh S K, et al. 2015. Mineralogy and Sr-Nd isotopes of SPM and sediment from the Mandovi and Zuari estuaries: Influence of weathering and anthropogenic contribution. Estuarine, Coastal and Shelf Science, 156: 103–115. doi: 10.1016/j.ecss.2014.07.004
    [61]
    Shetye S R, Gouveia A D, Singbal S Y, et al. 1995. Propagation of tides in the Mandovi-Zuari estuarine network. Proceedings of the Indian Academy of Sciences—Earth and Planetary Sciences, 104(4): 667–682
    [62]
    Shetye S R, Kumar M D, Shankar D. 2007. The Mandovi and Zuari Estuaries. Goa: National Institute of Oceanography
    [63]
    Strickland J D H, Parsons T R. 1972. A Practical Handbook of Seawater Analysis. Bulletin: Fisheries Research Board Canada
    [64]
    Subha Anand S, Sardessai S, Muthukumar C, et al. 2014. Intra-and inter-seasonal variability of nutrients in a tropical monsoonal estuary (Zuari, India). Continental Shelf Research, 82: 9–30. doi: 10.1016/j.csr.2014.04.005
    [65]
    Sundar D, Shetye S R. 2005. Tides in the Mandovi and Zuari estuaries, Goa, west coast of India. Journal of Earth System Science, 114(5): 493–503. doi: 10.1007/BF02702025
    [66]
    Suprit K, Shankar D. 2008. Resolving orographic rainfall on the Indian west coast. International Journal of Climatology, 28(5): 643–657. doi: 10.1002/joc.1566
    [67]
    Suzuki K W, Gwak W S, Nakayama K, et al. 2010. Instability of the turbidity maximum in the macrotidal Geum River estuary, western Korea. Limnology, 11(3): 197–205. doi: 10.1007/s10201-009-0303-7
    [68]
    Syvitski J P M, Cohen S, Kettner A J, et al. 2014. How important and different are tropical rivers? — An overview. Geomorphology, 227: 5–17. doi: 10.1016/j.geomorph.2014.02.029
    [69]
    Tanoue E, Ishii M, Midorikawa T. 1996. Discrete dissolved and particulate proteins in oceanic waters. Limnology and Oceanography, 41(6): 1334–1343. doi: 10.4319/lo.1996.41.6.1334
    [70]
    Uncles R J, Stephens J A, Law D J. 2006. Turbidity maximum in the macrotidal, highly turbid Humber Estuary, UK: Flocs, fluid mud, stationary suspensions and tidal bores. Estuarine, Coastal and Shelf Science, 67(1–2): 30–52. doi: 10.1016/j.ecss.2005.10.013
    [71]
    Unger D, Herbeck L S, Li Min, et al. 2013. Sources, transformation and fate of particulate amino acids and hexosamines under varying hydrological regimes in the tropical Wenchang/Wenjiao Rivers and Estuary, Hainan, China. Continental Shelf Research, 57: 44–58. doi: 10.1016/j.csr.2012.02.014
    [72]
    Veuger B, van Oevelen D, Middelburg J J. 2012. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment. Geochimica et Cosmochimica Acta, 83: 217–233. doi: 10.1016/j.gca.2011.12.016
    [73]
    Vijith V, Sundar D, Shetye S R. 2009. Time-dependence of salinity in monsoonal estuaries. Estuarine, Coastal and Shelf Science, 85(4): 601–608. doi: 10.1016/j.ecss.2009.10.003
    [74]
    Wagle B G, Gujar A R, Subramanyam V, et al. 1988. Seabed surveys of Marmugoa harbour central west coast of India. Indian Journal of Marine Sciences, 17: 59–68
    [75]
    Wu Ying, Bao Hongyan, Unger D, et al. 2013. Biogeochemical behavior of organic carbon in a small tropical river and estuary, Hainan, China. Continental Shelf Research, 57: 32–43. doi: 10.1016/j.csr.2012.07.017
    [76]
    Wu Ying, Dittmar T, Ludwichowski K U, et al. 2007. Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea. Marine Chemistry, 107(3): 367–377. doi: 10.1016/j.marchem.2007.01.022
    [77]
    Xu Yunping, Zhou Shangzhe, Hu Limin, et al. 2018. Different controls on sedimentary organic carbon in the Bohai Sea: River mouth relocation, turbidity and eutrophication. Journal of Marine Systems, 180: 1–8. doi: 10.1016/j.jmarsys.2017.12.004
    [78]
    Yang Liyang, Guo Weidong, Hong Huasheng, et al. 2013. Non-conservative behaviors of chromophoric dissolved organic matter in a turbid estuary: Roles of multiple biogeochemical processes. Estuarine, Coastal and Shelf Science, 133: 285–292. doi: 10.1016/j.ecss.2013.09.007
    [79]
    Zhang Yulong, Kaiser K, Li Li, et al. 2014. Sources, distributions, and early diagenesis of sedimentary organic matter in the Pearl River region of the South China Sea. Marine Chemistry, 158: 39–48. doi: 10.1016/j.marchem.2013.11.003
    [80]
    Zhang Jing, Wu Ying, Jennerjahn T C, et al. 2007. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics. Marine Chemistry, 106(1–2): 111–126. doi: 10.1016/j.marchem.2007.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (305) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return